
AN-023

Protege GX Modbus Server Integration

Application Note

The specifications and descriptions of products and services contained in this document were correct at the time
of printing. Integrated Control Technology Limited reserves the right to change specifications or withdraw
products without notice. No part of this document may be reproduced, photocopied, or transmitted in any form or
by any means (electronic or mechanical), for any purpose, without the express written permission of Integrated
Control Technology Limited. Designed and manufactured by Integrated Control Technology Limited, Protege® and
the Protege® Logo are registered trademarks of Integrated Control Technology Limited. All other brand or product
names are trademarks or registered trademarks of their respective holders.

Copyright © Integrated Control Technology Limited 2003-2023. All rights reserved.

Last Published: 18-Apr-23 01:37 PM

AN-023 | Protege GX Modbus Server Integration | Application Note 2

Contents

Introduction 5

How It Works 6

Modbus TCP/IP 6

Prerequisites 6

Supported Functionality 6

Supported Modbus Function Codes 8

About Modbus 9

Modbus Register Maps 9

Register Reference Description 9

Register Configuration 10

Map Structure 10

Output Coils Address Map 12

Controller Output Coils 12

LCD Keypad Output Coils 12

Input Expander Output Coils 13

Reader Expander Output Coils 13

Output Expander Output Coils 14

Analog Input / Output Expander Output Coils 14

Inputs Address Map 15

Controller Inputs 15

LCD Keypad Inputs 16

Input Expander Inputs 16

Reader Expander Inputs 17

Trouble Inputs Address Map 18

Controller Trouble Inputs 18

LCD Keypad Trouble Inputs 19

Input Expander Trouble Inputs 20

Reader Expander Trouble Inputs 21

Output Expander Trouble Inputs 22

Analog Input / Output Expander Trouble Inputs 22

Programming the Service 23

Appendix: Python Validation Scripts 24

Controller Input 24

Controller Output 25

AN-023 | Protege GX Modbus Server Integration | Application Note 3

Controller Output - Multiple 26

Controller Test Limits 28

AN-023 | Protege GX Modbus Server Integration | Application Note 4

Introduction
Protege GX is an enterprise level integrated access control, intrusion detection and building automation solution
with a feature set that is easy to operate, simple to integrate and effortless to extend.

Communication is over a proprietary high speed protocol across an encrypted local area network and AES
encrypted proprietary RS-485 module network. Using modular-based hardware design, system installers have the
flexibility to accommodate any installation, small or large, residential or commercial.

The Modbus protocol was developed by Modicon for industrial automation applications and provides a commonly
available means of connecting industrial electronic instruments. Modbus is relatively easy to deploy and maintain
and remains the most widely available protocol for connecting industrial devices.

Protege GX offers two methods of integrating with Modbus systems:

Modbus Server Integration Modbus Client Integration

One or more Protege GX controllers act as Modbus
servers.

One Protege GX controller acts as a Modbus client.

The Modbus client reads and writes Protege GX inputs
and outputs.

The controller reads and writes digital inputs (inputs),
coils (outputs) and registers (data values) on
connected Modbus server devices.

Communication over ethernet (TCP/IP). Communication over RS-485.

Documented in Application Note 023: Protege GX
Modbus Server Integration.

Documented in Application Note 353: Protege GX
Modbus Client Integration.

This application note describes how to interface the Protege GX system controller to a Modbus network TCP/IP
connection as a server device, to allow inputs and outputs connected to the Protege system to be read and
controlled by the Modbus client. The integration is based on the protocol document V1.1b as described on the
modbus.org website. For information on the Modbus protocol please consult the documentation.

Previously the Modbus client was referred to as the "master" and server devices were referred to as "slave"
devices. This terminology has been deprecated by the Modbus Organization (see this press release).

AN-023 | Protege GX Modbus Server Integration | Application Note 5

https://modbus.org/docs/Modbus_Application_Protocol_V1_1b.pdf
http://www.modbus.org/
https://modbus.org/docs/Client-ServerPR-07-2020-final.docx.pdf

How It Works
One or more Protege GX controllers can be connected to the Modbus network over ethernet. Each controller is
identified on the Modbus network by a unique hexadecimal client address. This is configured in the customized
Modbus service which facilitates communication between the controller and the Modbus network (see page 23).

Ethernet Switch

Controller

Modbus PLC

Controller

Modbus TCP/IP
This implementation is Modbus TCP/IP. It is notModbus over TCP/IP.

⦁ Modbus TCP/IP means a Modbus TCP packet wrapped in a TCP packet.

⦁ Modbus over TCP/IP means a Modbus RTU packet wrapped in a TCP packet.

The two are not compatible. They transfer like data but have different structures. Please ensure you are familiar
with the protocol differences, and that any device that is communicating with the Protege GX system controller is
using the same method of communication.

Prerequisites
Connecting a Protege GX system controller to a Modbus network requires the following firmware prerequisite.

Component Version Notes

Protege GX Controller 2.08.1342 or higher

Supported Functionality
In simple terms, the Modbus network operates by reading from and writing to assigned objects. In this integration
that equates to reading the status of inputs and outputs, and activating or deactivating outputs.

Function Type Value Description

Read
Status 0 Input/Output is Off

Status 1 Input/Output is On

Write
Control 0 Deactivate Output

Control 1 Activate Output

AN-023 | Protege GX Modbus Server Integration | Application Note 6

Notes and Limitations

⦁ You can set the number of items to read or write to. For example, you can specify a start and the count of coils.

⦁ Since the controller has a limited buffer and each request consumes a certain amount of processing time, the
maximum number of items is limited to an operationally sustainable size.

⦁ Exceeding the total number of requested objects will result in an exception being returned to your calling
application or device.

⦁ Using an unsupported function code will return the appropriate exception.

⦁ The python scripts provided in the appendix of this document detail the exceptions and provide examples
where an exception is generated due to a malformed call.

⦁ Writing past the limit of the registers or outside the bounds of the designated address space for multiple read
or write will result in an exception being returned. The maximum number of objects is provided in the table
below. For example, the maximum number of coils is 512, which equates to 64 bytes.

⦁ Writing to multiple coils is supported. However, given the potential loading that this can cause it is limited to 16
coils in each call.

⦁ Activating outputs will result in the output generating an event, if programmed to do so. Pay attention to the
number of events being generated to ensure you maintain performance of your controller. To improve the
user experience, disable events for outputs that you are activating frequently.

ICT provides a number of third-party connection options including the automation and control protocol, direct
DLL calling using the REST API, and server-based SOAP calls through our open API. If the Modbus protocol does
not provide the additional functionality required please investigate these options or get in touch with us so we
can assist you with your integration needs.

AN-023 | Protege GX Modbus Server Integration | Application Note 7

Supported Modbus Function Codes
The following table identifies which Modbus function codes are supported by the integration, and the maximum
number of items that can be requested by each supported function.

Function Type Function
Function
Code

Supported Maximum

Data
Access

Bit
Access

Physical Discrete Inputs
Read Discrete
Inputs

2 512

Physical and Virtual
Coils/Outputs

Read Coils 1 512

Write Single Coil 5 1

Write Multiple Coils 15 16

16-Bit
Access

Physical Input Registers
Read Input
Registers

4 N/A

Internal Registers or
Physical Output Registers

Read Multiple
Holding Registers

3 N/A

Write Single
Holding Register

6 N/A

Write Multiple
Holding Registers

16 N/A

Read/Write Multiple
Registers

23 N/A

Mask Write Register 22 N/A

Read FIFO Queue 24 N/A

File Record Access
Read File Record 20 N/A

Write File Record 21 N/A

Diagnostics

Read Exception
Status

7 N/A

Diagnostic 8 N/A

Get Com Event
Counter

11 N/A

Get Com Event Log 12 N/A

Report Server ID 17 N/A

Read Device
Identification

43 N/A

Other
Encapsulated
Interface Transport

43 N/A

AN-023 | Protege GX Modbus Server Integration | Application Note 8

About Modbus
Modbus devices communicate using a client-server architecture in which only one device (the client) can initiate
transactions (called queries). The other devices (servers) respond by supplying the requested data to the client, or
by taking the action requested in the query.

A server is any peripheral device which processes information and sends it to the client using the Modbus protocol.
The Protege GX controller operates as a server device on the Modbus network, while a typical client device is a
host computer running appropriate application software.

Clients can address individual servers or initiate a broadcast message to all servers. Servers return a response to all
queries addressed to them individually, but do not respond to broadcast queries. A client’s query consists of a
server address (or broadcast address), a function code defining the requested action, any required data, and an
optional error checking field, depending on the physical connection being used. A server’s response consists of
fields confirming the action taken, any data to be returned, and optionally an error checking field.

Note that the query and response both include a device address, plus a function code, plus applicable data, and
optional error checking field. If no error occurs the server's response contains the data requested. If an error occurs
in the query received, or if the server is unable to perform the action requested, the server will return an exception
message as its response (see Modbus Exceptions on the modbus.org website).

For more information, go to www.modbus.org.

Modbus Register Maps
Modbus functions operate on register map registers to monitor, configure, and control module I/O. A register map
is provided in this document for the Protege GX controller. You will also find it helpful to refer to the register map
as you review the functionality that is required to be integrated with the Protege GX controller.

Modbus registers are organized into reference types identified by the leading number of the reference address.

Register Reference Description
Address Reference Description

0xxxxx Read/Write Discrete Outputs or Coils
A 0x reference address is used to drive output data to
a digital output channel.

1xxxxx Read Discrete Inputs
The ON/OFF status of a 1x reference address is
controlled by the corresponding digital input channel.

AN-023 | Protege GX Modbus Server Integration | Application Note 9

http://www.modbus.org/

Register Configuration
The following register map defines each coil and input that is available in the Protege GX controller. Any registers
that are not defined should be treated as reserved locations and not used for any other purpose.

Map Structure

Output Coils Address Map
The following table summarizes the output coil addressing register (see page 12).

Protege Module Output Coils Modbus Coil Address Range

Controller Output Coils 00001-00004

LCD Keypad Output Coils 00005-00516

Input Expander Output Coils 00517-01028

Reader Expander Output Coils 01029-02052

Output Expander Output Coils 02053-04100

Analog Input / Output Expander Output Coils 04101-04612

Inputs Address Map
The following table summarizes the input addressing register (see page 15).

Protege Module Inputs Modbus Input Address Range

Controller Inputs 00001-00016

LCD Keypad Inputs 00017-00528

Input Expander Inputs 00529-02576

Reader Expander Inputs 02577-03600

Trouble Inputs Address Map
The following table summarizes the trouble input addressing register (see page 18).

Protege Module Trouble Inputs Modbus Input Address Range

Controller Trouble Inputs 10001-10064

LCD Keypad Trouble Inputs 10065-11088

Input Expander Trouble Inputs 11089-13136

Reader Expander Trouble Inputs 13137-15184

Output Expander Trouble Inputs 15185-16208

Analog Input / Output Expander Trouble Inputs 16209-17232

AN-023 | Protege GX Modbus Server Integration | Application Note 10

Protege Module Models and Mapping
The register mapping is fixed and applies to all Protege modules. This includes current DIN rail modules and legacy
PCB devices. Due to changes in hardware over time devices may have a different number of inputs or outputs than
defined by the map structure, but the structure still applies and the sequence must be maintained for each device.

For example, for 8 output expanders only the first 8 Modbus coil numbers are used (2053 to 2060) but the second
8 output expander must still start at coil number 2069, and so on. The number of supported modules remains,
whether or not the available addresses are used. If an I/O is no longer used, such as controller CP001:02, the
mapping remains as though the output was still present.

AN-023 | Protege GX Modbus Server Integration | Application Note 11

Output Coils Address Map
Modbus coils are boolean values (1 or 0) that are typically used to represent an output device. Coils can be
controlled (activate/deactivate) and can return the status of the output (on/off).

The following section outlines the Modbus coil address mapping for the outputs on supported Protege modules. A
number of model configurations are supported for each device type, and the number of outputs available and
their function depends on the model. For specific output assignments, see the appropriate installation manual.

Controller Output Coils
This mapping will allow the control and status checking of 4 onboard outputs on the controller.

Multiple controllers may be connected on the Modbus network. The same mapping applies to each controller.

Output Number Output Read/Write Modbus Coil Number

CP001:01 Output 1 RD+WR 00001

CP001:02 Output 2 RD+WR 00002

CP001:03 Output 3 RD+WR 00003

CP001:04 Output 4 RD+WR 00004

LCD Keypad Output Coils
This mapping allows the control and status checking of outputs 1 to 4 on the first 128 registered keypads.

Output Number Output Read/Write Modbus Coil Number

KP001:01 Output 1 RD+WR 00005

KP001:02 Output 2 RD+WR 00006

KP001:03 Output 3 RD+WR 00007

KP001:04 Output 4 RD+WR 00008

KP002:01 Output 1 RD+WR 00009

| | | | | | | | | |

KP128:04 Output 4 RD+WR 00516

AN-023 | Protege GX Modbus Server Integration | Application Note 12

Input Expander Output Coils
This mapping allows the control and status checking of outputs 1 to 4 on the first 128 registered input expanders.

Output Number Output Read/Write Modbus Coil Number

ZX001:01 Output 1 RD+WR 00517

ZX001:02 Output 2 RD+WR 00518

ZX001:03 Output 3 RD+WR 00519

ZX001:04 Output 4 RD+WR 00520

ZX002:01 Output 1 RD+WR 00521

| | | | | | | | | |

ZX128:04 Output 4 RD+WR 01028

Reader Expander Output Coils
This mapping allows the control and status checking of outputs 1 to 8 on the first 128 registered reader expanders.

Output Number Output Read/Write Modbus Coil Number

RD001:01 Output 1 RD+WR 01029

RD001:02 Output 2 RD+WR 01030

RD001:03 Output 3 RD+WR 01031

RD001:04 Output 4 RD+WR 01032

RD001:05 Output 5 RD+WR 01033

RD001:06 Output 6 RD+WR 01034

RD001:07 Output 7 RD+WR 01035

RD001:08 Output 8 RD+WR 01036

RD002:01 Output 1 RD+WR 01037

| | | | | | | | | |

RD128:08 Output 8 RD+WR 02052

AN-023 | Protege GX Modbus Server Integration | Application Note 13

Output Expander Output Coils
This mapping allows the control and status checking of outputs 1 to 16 on the first 128 registered output expanders.

Output Number Output Read/Write Modbus Coil Number

PX001:01 Output 1 RD+WR 02053

PX001:02 Output 2 RD+WR 02054

PX001:03 Output 3 RD+WR 02055

PX001:04 Output 4 RD+WR 02056

PX001:05 Output 5 RD+WR 02057

PX001:06 Output 6 RD+WR 02058

PX001:07 Output 7 RD+WR 02059

PX001:08 Output 8 RD+WR 02060

PX001:09 Output 9 RD+WR 02061

PX001:10 Output 10 RD+WR 02062

PX001:11 Output 11 RD+WR 02063

PX001:12 Output 12 RD+WR 02064

PX001:13 Output 13 RD+WR 02065

PX001:14 Output 14 RD+WR 02066

PX001:15 Output 15 RD+WR 02067

PX001:16 Output 16 RD+WR 02068

PX002:01 Output 1 RD+WR 02069

| | | | | | | | | |

PX128:16 Output 16 RD+WR 04100

Analog Input / Output Expander Output Coils
This mapping allows the control and status checking of outputs 1 to 4 on the first 128 registered analog expanders.

Output Number Output Read/Write Modbus Coil Number

AE001:01 Output 1 RD+WR 04101

AE001:02 Output 2 RD+WR 04102

AE001:03 Output 3 RD+WR 04103

AE001:04 Output 4 RD+WR 04104

AE002:01 Output 1 RD+WR 04105

| | | | | | | | | |

AE128:04 Output 4 RD+WR 04612

AN-023 | Protege GX Modbus Server Integration | Application Note 14

Inputs Address Map
Inputs are boolean values (1 or 0) that are read-only and will return the status of an input (open/closed). Where an
input is in any state other than open or closed it will be represented as open.

If an input address is requested that is not registered on the system or is outside the bounds of the input range an
exception will be generated.

The following section outlines the Modbus input address mapping for the inputs on supported Protege modules. A
number of model configurations are supported for each device type, and the number of inputs available depends
on the model. For specific input assignments, see the appropriate installation manual.

Controller Inputs
This mapping will allow the status of 16 onboard inputs on the controller to be read.

Multiple controllers may be connected on the Modbus network. The same mapping applies to each controller.

Input Number Input Read/Write Modbus Input Number

CP001:01 Input 1 RD 00001

CP001:02 Input 2 RD 00002

CP001:03 Input 3 RD 00003

CP001:04 Input 4 RD 00004

CP001:05 Input 5 RD 00005

CP001:06 Input 6 RD 00006

CP001:07 Input 7 RD 00007

CP001:08 Input 8 RD 00008

CP001:09 Input 9 RD 00009

CP001:10 Input 10 RD 00010

CP001:11 Input 11 RD 00011

CP001:12 Input 12 RD 00012

CP001:13 Input 13 RD 00013

CP001:14 Input 14 RD 00014

CP001:15 Input 15 RD 00015

CP001:16 Input 16 RD 00016

AN-023 | Protege GX Modbus Server Integration | Application Note 15

LCD Keypad Inputs
This mapping allows the status of inputs 1 to 4 on the first 128 registered keypads to be read.

Input Number Input Read/Write Modbus Input Number

KP001:01 Input 1 RD 00017

KP001:02 Input 2 RD 00018

KP001:03 Input 3 RD 00019

KP001:04 Input 4 RD 00020

KP002:01 Input 1 RD 00021

| | | | | | | | |

KP128:04 Input 4 RD 00528

Input Expander Inputs
This mapping allows the status of inputs 1 to 16 on the first 128 registered input expanders to be read.

Input Number Input Read/Write Modbus Input Number

ZX001:01 Input 1 RD 00529

ZX001:02 Input 2 RD 00530

ZX001:03 Input 3 RD 00531

ZX001:04 Input 4 RD 00532

ZX001:05 Input 5 RD 00533

ZX001:06 Input 6 RD 00534

ZX001:07 Input 7 RD 00535

ZX001:08 Input 8 RD 00536

ZX001:09 Input 9 RD 00537

ZX001:10 Input 10 RD 00538

ZX001:11 Input 11 RD 00539

ZX001:12 Input 12 RD 00540

ZX001:13 Input 13 RD 00541

ZX001:14 Input 14 RD 00542

ZX001:15 Input 15 RD 00543

ZX001:16 Input 16 RD 00544

ZX002:01 Input 1 RD 00545

| | | | | | | | |

ZX128:16 Input 16 RD 02576

AN-023 | Protege GX Modbus Server Integration | Application Note 16

Reader Expander Inputs
This mapping allows the status of inputs 1 to 8 on the first 128 registered reader expanders to be read.

Input Number Input Read/Write Modbus Input Number

RD001:01 Input 1 RD 02577

RD001:02 Input 2 RD 02578

RD001:03 Input 3 RD 02579

RD001:04 Input 4 RD 02580

RD001:05 Input 5 RD 02581

RD001:06 Input 6 RD 02582

RD001:07 Input 7 RD 02583

RD001:08 Input 8 RD 02584

RD002:01 Input 1 RD 02585

| | | | | | | | |

RD128:08 Input 8 RD 03600

AN-023 | Protege GX Modbus Server Integration | Application Note 17

Trouble Inputs Address Map
Trouble inputs are boolean values (1 or 0) that are read-only and will return the status of a trouble input
(open/closed).

If an input address is requested that is not registered on the system or outside the bounds of the input range an
exception will be generated.

The following section outlines the Modbus input address mapping for the trouble inputs on supported Protege
modules. A number of model configurations are supported for each device type, and the number of trouble inputs
available and their function depends on the model. For specific trouble input assignments, see the appropriate
installation manual.

Controller Trouble Inputs
This mapping will allow the status of the controller's trouble inputs to be read.

Multiple controllers may be connected on the Modbus network. The same mapping applies to each controller.

Trouble Input Number Trouble Input Read / Write Input Number

CP001:01 Trouble Input 1 RD 10001

CP001:02 Trouble Input 2 RD 10002

CP001:03 Trouble Input 3 RD 10003

CP001:04 Trouble Input 4 RD 10004

CP001:05 Trouble Input 5 RD 10005

CP001:06 Trouble Input 6 RD 10006

CP001:07 Trouble Input 7 RD 10007

CP001:08 Trouble Input 8 RD 10008

CP001:09 Trouble Input 9 RD 10009

CP001:10 Trouble Input 10 RD 10010

CP001:11 Trouble Input 11 RD 10011

CP001:12 Trouble Input 12 RD 10012

CP001:13 Trouble Input 13 RD 10013

CP001:14 Trouble Input 14 RD 10014

CP001:15 Trouble Input 15 RD 10015

CP001:16 Trouble Input 16 RD 10016

CP001:17 Trouble Input 17 RD 1007

CP001:18 Trouble Input 18 RD 10018

CP001:19 Trouble Input 19 RD 10019

CP001:20 Trouble Input 20 RD 10020

| | | | | | | | | |

CP001:64 Trouble Input 64 RD 10064

AN-023 | Protege GX Modbus Server Integration | Application Note 18

LCD Keypad Trouble Inputs
This mapping allows the status of the trouble inputs to be read for the first 128 registered keypads.

Trouble Input Number Trouble Input Read / Write Input Number

KP001:01 Trouble Input 1 RD 10065

KP001:02 Trouble Input 2 RD 10066

KP001:03 Trouble Input 3 RD 10067

KP001:04 Trouble Input 4 RD 10068

KP001:05 Trouble Input 5 RD 10069

KP001:06 Trouble Input 6 RD 10070

KP001:07 Trouble Input 7 RD 10071

KP001:08 Trouble Input 8 RD 10072

KP002:01 Trouble Input 1 RD 10073

| | | | | | | | | |

KP128:08 Trouble Input 8 RD 11088

AN-023 | Protege GX Modbus Server Integration | Application Note 19

Input Expander Trouble Inputs
This mapping allows the status of the trouble inputs to be read for the first 128 registered input expanders.

Trouble Input Number Trouble Input Read / Write Input Number

ZX001:01 Trouble Input 1 RD 11089

ZX001:02 Trouble Input 2 RD 11090

ZX001:03 Trouble Input 3 RD 11091

ZX001:04 Trouble Input 4 RD 11092

ZX001:05 Trouble Input 5 RD 11093

ZX001:06 Trouble Input 6 RD 11094

ZX001:07 Trouble Input 7 RD 11095

ZX001:08 Trouble Input 8 RD 11096

ZX001:09 Trouble Input 9 RD 11097

ZX001:10 Trouble Input 10 RD 11098

ZX001:11 Trouble Input 11 RD 11099

ZX001:12 Trouble Input 12 RD 11100

ZX001:13 Trouble Input 13 RD 11101

ZX001:14 Trouble Input 14 RD 11102

ZX001:15 Trouble Input 15 RD 11103

ZX001:16 Trouble Input 16 RD 11104

ZX002:01 Trouble Input 1 RD 11105

| | | | | | | | | |

ZX128:16 Trouble Input 16 RD 13136

AN-023 | Protege GX Modbus Server Integration | Application Note 20

Reader Expander Trouble Inputs
This mapping allows the status of the trouble inputs to be read for the first 128 registered reader expanders.

Trouble Input Number Trouble Input Read / Write Input Number

RD001:01 Trouble Input 1 RD 13137

RD001:02 Trouble Input 2 RD 13138

RD001:03 Trouble Input 3 RD 13139

RD001:04 Trouble Input 4 RD 13140

RD001:05 Trouble Input 5 RD 13141

RD001:06 Trouble Input 6 RD 13142

RD001:07 Trouble Input 7 RD 13143

RD001:08 Trouble Input 8 RD 13144

RD001:09 Trouble Input 9 RD 13145

RD001:10 Trouble Input 10 RD 13146

RD001:11 Trouble Input 11 RD 13147

RD001:12 Trouble Input 12 RD 13148

RD001:13 Trouble Input 13 RD 13149

RD001:14 Trouble Input 14 RD 13150

RD001:15 Trouble Input 15 RD 13151

RD001:16 Trouble Input 16 RD 13152

RD002:01 Trouble Input 1 RD 13153

| | | | | | | | | |

RD128:16 Trouble Input 16 RD 15184

AN-023 | Protege GX Modbus Server Integration | Application Note 21

Output Expander Trouble Inputs
This mapping allows the status of the trouble inputs to be read for the first 128 registered output expanders.

Trouble Input Number Trouble Input Read / Write Input Number

PX001:01 Trouble Input 1 RD 15185

PX001:02 Trouble Input 2 RD 15186

PX001:03 Trouble Input 3 RD 15187

PX001:04 Trouble Input 4 RD 15188

PX001:05 Trouble Input 5 RD 15189

PX001:06 Trouble Input 6 RD 15190

PX001:07 Trouble Input 7 RD 15191

PX001:08 Trouble Input 8 RD 15192

PX002:01 Trouble Input 1 RD 15193

| | | | | | | | | |

PX128:08 Trouble Input 8 RD 16208

Analog Input / Output Expander Trouble Inputs
This mapping allows the status of the trouble inputs to be read for the first 128 registered analog expanders.

Trouble Input Number Trouble Input Read / Write Input Number

AE001:01 Trouble Input 1 RD 16209

AE001:02 Trouble Input 2 RD 16210

AE001:03 Trouble Input 3 RD 16211

AE001:04 Trouble Input 4 RD 16212

AE001:05 Trouble Input 5 RD 16213

AE001:06 Trouble Input 6 RD 16214

AE001:07 Trouble Input 7 RD 16215

AE001:08 Trouble Input 8 RD 16216

AE002:01 Trouble Input 1 RD 16217

| | | | | | | | | |

AE128:08 Trouble Input 8 RD 17232

AN-023 | Protege GX Modbus Server Integration | Application Note 22

Programming the Service
This integration uses a customized service which facilitates communication between a Protege GX controller and
the Modbus network.

A separate service is required for each Protege GX controller connected to the Modbus network, each with a
unique client address configuration to identify the specific controller on the Modbus network.

Before connecting to a live Modbus network ensure the server ID and related information is accurate and that you
have tested the connection. The Python validation scripts provided in the appendix (see next page) will allow you
to communicate with the Modbus service and verify the points and registers prior to deployment to a live network.

1. To configure the Protege GX Modbus service, navigate to Programming | Services.

2. In the toolbar, select the controller that will be connected to the Modbus network.

If multiple controllers are to be connected they will each require their own Modbus service configured.

3. Click Add to create the new service, and give the service an appropriate Name, such as Modbus Service.

4. Set the Service type to Modbus.

5. Set the Service mode to 1 - Start with controller OS.

6. In the General tab, set the Modbus service Configuration properties.
- Port number: Must be set to TCP/IP.

Once the service is started port 502 will be opened on the controller. This is the default port Modbus
servers will communicate on.

- Client address: The device address for the controller in the Modbus communication network. This should
be a unique hexadecimal number which is not 0x00 or 0xFF. The client address is typically provided by
the automation company or SCADA system that the controller will be connected to.

If multiple Protege GX controllers are connected they each require their own unique client address.

- Poll time: This field defines the maximum length of time (in seconds) expected between polls from the
Modbus client. For example, if the poll time is set to 60 the controller will expect a poll every 60 seconds. If
there is no poll an error will be logged in the event log and the Output / Output group turns on when
polling failswill be activated.

- Output / Output group turns on when polling fails: This output or output group is activated when the
Poll time set above expires with no polling messages received. It is deactivated when the Modbus service
completes a valid communication. Use this option to notify users that there is an issue in the Modbus
system.

7. Select the required Options for the Modbus service.
- Log communication events: When this option is enabled, events will be logged for all Modbus

communications. This option may be useful for initial configuration and troubleshooting but should be
disabled during normal operation to save event storage.

- Log communication errors: When this option is enabled, events will be logged for all Modbus
communication errors.

- Integers as big endian: The default method of sending multi byte numbers is Little Endian (least
significant byte first). With this option selected, multi byte numbers will be sent as Big Endian (most
significant byte first).

- Use remote register variables: This is a legacy option that has no effect.
- Enable coil input translation: This is a legacy option that has no effect.

8. Click Save.

9. Download the changes to the controller and start the service

AN-023 | Protege GX Modbus Server Integration | Application Note 23

Appendix: Python Validation Scripts
To assist with connectivity and validation a series of Python scripts are provided, which allow you to exercise the
ModBUS TCP/IP connection.

ICT does not directly support the Python libraries, however there is a wealth of information available by searching
for Python examples.

When contacting ICT Technical Support for assistance you will be asked to execute the scripts provided. Because
the connectivity options are limitless, using the scripts ensures that we are working to a known set of parameters.

The Python script examples use the following library: https://pymodbustcp.readthedocs.io/

This code is provided by Integrated Control Technology as is with no warranty or liability. The code is for the
sole use and validation of the Modbus services available on ICT products and controllers.

Controller Input
This code is provided by Integrated Control Technology Ltd as is with no
warranty or liability.
The code is for the sole use and validation of the Modbus services available
on ICT products and controllers.

Below will get the first 16 coils from the controller. It will then activate
and deactivate the third coil from address 0, this is relay 1 on the
controller, every two seconds.
#
You can control relay 2 from another application and see the status change
while relay 1 is being controlled through Modbus.

from pyModbusTCP.client import ModbusClient
import time
SERVER_HOST = "192.168.1.2"
SERVER_PORT = 502
SERVER_U_ID = 1

try:
 c = ModbusClient(host=SERVER_HOST, port=SERVER_PORT, auto_open=True,
debug=False)
except ValueError:

print("Error with host or port params")

Uncomment this line to see debug messages being sent over the Modbus link
c.debug(True)

try:
while True:

read 16 bits at address 0, store result in bits list
first 4 bits are the controller outputs and then keypads 1-3.

 bits = c.read_discrete_inputs(0, 16)
if success display data
if bits:

AN-023 | Protege GX Modbus Server Integration | Application Note 24

https://pymodbustcp.readthedocs.io/

print("Data ", end = '')
for x in bits:

if x == True:
print(1, end = '')

else:
print(0, end = '')

print("");
else:

print('unable to read inputs')
print(c.last_except_as_txt)

sleep 2s before next polling of the relays
 time.sleep(2)

except KeyboardInterrupt:
pass

c.close();
print("closing port")

print("done")

Controller Output
This code is provided by Integrated Control Technology Ltd as is with no
warranty or liability.
The code is for the sole use and validation of the Modbus services available
on ICT products and controllers.

Below will get the first 16 coils from the controller. It will then activate
and deactivate the third coil from address 0, this is relay 1 on the
controller, every two seconds.
#
You can control relay 2 from another application and see the status change
while relay 1 is being controlled through Modbus.

from pyModbusTCP.client import ModbusClient
import time
SERVER_HOST = "192.168.1.2"
SERVER_PORT = 502
SERVER_U_ID = 1

try:
 c = ModbusClient(host=SERVER_HOST, port=SERVER_PORT, auto_open=True,
debug=False)
except ValueError:

print("Error with host or port params")

Uncomment this line to see debug messages being sent over the Modbus link
c.debug(True)

try:

AN-023 | Protege GX Modbus Server Integration | Application Note 25

while True:
read 16 bits at address 0, store result in bits list
first 4 bits are the controller outputs and then keypads 1-3.

 bits = c.read_coils(0, 16)
if success display data
if bits:

print("Data ", end = '')
for x in bits:

if x == True:
print(1, end = '')

else:
print(0, end = '')

print("");
else:

print('unable to read coils')
print(c.last_except_as_txt)

if bits[2]:
 c.write_single_coil(2,0)

else:
 c.write_single_coil(2,1)

sleep 2s before next polling of the relays
 time.sleep(2)

except KeyboardInterrupt:
pass

c.close();
print("closing port")

print("done")

Controller Output - Multiple
This code is provided by Integrated Control Technology Ltd as is with no
warranty or liability.
The code is for the sole use and validation of the Modbus services available
on ICT products and controllers.

*** read multiple coils ***
*** write multiple coils ***
#
Below will get the first 16 coils from the controller. It will then activate
and deactivate the third coil from address 0, this is relay 1 on the
controller (bit[2] in the response), doing this every two seconds.
#
You can control relay 2 from another application and see the status change
while relay 1 is being controlled through Modbus.
#
The functionality below is identical to that of the single coil write and
multi coil read however this uses the multiple coil write method.

AN-023 | Protege GX Modbus Server Integration | Application Note 26

from pyModbusTCP.client import ModbusClient
import time
SERVER_HOST = "192.168.1.2"
SERVER_PORT = 502
SERVER_U_ID = 1

try:
 c = ModbusClient(host=SERVER_HOST, port=SERVER_PORT, auto_open=True,
debug=False)
except ValueError:

print("Error with host or port params")

Uncomment this line to see debug messages being sent over the Modbus link
c.debug(True)

try:
while True:

read 16 bits at address 0, store result in bits list
first 4 bits are the controller outputs and then keypads 1-3.

 bits = c.read_coils(0, 16)
if success display data
if bits:

print("Data ", end = '')
for x in bits:

if x == True:
print(1, end = '')

else:
print(0, end = '')

print("");
else:

print('unable to read coils')
print(c.last_except_as_txt)

#use bit 2 but could be any bit
if bits[2]:

 bits[2] = False
else:

 bits[2] = True

 res = c.write_multiple_coils(0,bits)
if not res:

print('unable to write coils')
print(c.last_except_as_txt)

sleep 2s before next polling of the relays
 time.sleep(2)

except KeyboardInterrupt:
pass

c.close();
print("closing port")

print("done")

AN-023 | Protege GX Modbus Server Integration | Application Note 27

Controller Test Limits
This code is provided by Integrated Control Technology Ltd as is with no
warranty or liability.
The code is for the sole use and validation of the Modbus services available
on ICT products and controllers.

This file is designed to validate the exceptions in various calls and ensure
that the return codes are correct. This will not actually perform any action
as ALL of the calls here are illegal and create an exception of some kind.

from pyModbusTCP.client import ModbusClient
import time
SERVER_HOST = "192.168.1.2"
SERVER_PORT = 502
SERVER_U_ID = 1

try:
 c = ModbusClient(host=SERVER_HOST, port=SERVER_PORT, auto_open=True,
debug=False)
except ValueError:

print("Error with host or port params")

Uncomment this line to see debug messages being sent over the Modbus link
c.debug(True)

Used to trigger a multi write failure
toolong = [False, False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, False]
somebits = [False, False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False]

try:

Multi coil read
print('Request number of coils over buffer allowance')

 bits = c.read_coils(0, 513)
if success display data
if bits:

print("************** FAILED VALIDATION **************");
else:

print(c.last_except_as_txt)

print('Request good number of coils however starting coil exceeds end of
allowable range')
 bits = c.read_coils(4600, 16) # see application note for offsets

if success display data
if bits:

print("************** FAILED VALIDATION **************");
else:

print(c.last_except_as_txt)

AN-023 | Protege GX Modbus Server Integration | Application Note 28

Multi input read
These cover trouble inputs as well so we want to check in the gap below
address 10000

print('Request number of inputs over buffer allowance')
 bits = c.read_discrete_inputs(0, 513)

if success display data
if bits:

print("************** FAILED VALIDATION **************");
else:

print(c.last_except_as_txt)

print('Request good number of inputs however starting input exceeds end of
input zone range')
 bits = c.read_discrete_inputs(3585, 16) # see application note for
offsets

if success display data
if bits:

print("************** FAILED VALIDATION **************");
else:

print(c.last_except_as_txt)

print('Request good number of inputs however address is past end of
trouble inputs ')
 bits = c.read_discrete_inputs(17217, 16) # see application note for
offsets

if success display data
if bits:

print("************** FAILED VALIDATION **************");
else:

print(c.last_except_as_txt)

Coil write
print('Write single coil outside bounds of output address')

 res = c.write_single_coil(4613,1)
if not res:

print(c.last_except_as_txt)
else:

print("************** FAILED VALIDATION **************");

Multi coil write
print('Write more coils in multiwrite than allowed')

 res = c.write_multiple_coils(0,toolong)
if not res:

print(c.last_except_as_txt)
else:

print("************** FAILED VALIDATION **************");

print('Write the correct number of coils but outside the address range')
 res = c.write_multiple_coils(4600,somebits)

if not res:
print(c.last_except_as_txt)

else:

AN-023 | Protege GX Modbus Server Integration | Application Note 29

print("************** FAILED VALIDATION **************");

except KeyboardInterrupt:
pass

c.close();
print("closing port")

print("done")

AN-023 | Protege GX Modbus Server Integration | Application Note 30

Designers & manufacturers of integrated electronic access control, security and automation products.

Designed & manufactured by Integrated Control Technology Ltd.

Copyright © Integrated Control Technology Limited 2003-2023. All rights reserved.

Disclaimer:Whilst every effort has been made to ensure accuracy in the representation of this product, neither Integrated Control Technology Ltd nor its

employees shall be liable under any circumstances to any party in respect of decisions or actions they may make as a result of using this information. In accordance

with the ICT policy of enhanced development, design and specifications are subject to change without notice.

www.ict.co 18-Apr-23

	Introduction
	How It Works
	Modbus TCP/IP

	Prerequisites
	Supported Functionality
	Supported Modbus Function Codes

	About Modbus
	Modbus Register Maps
	Register Reference Description

	Register Configuration
	Map Structure
	Output Coils Address Map
	Controller Output Coils
	LCD Keypad Output Coils
	Input Expander Output Coils
	Reader Expander Output Coils
	Output Expander Output Coils
	Analog Input / Output Expander Output Coils

	Inputs Address Map
	Controller Inputs
	LCD Keypad Inputs
	Input Expander Inputs
	Reader Expander Inputs

	Trouble Inputs Address Map
	Controller Trouble Inputs
	LCD Keypad Trouble Inputs
	Input Expander Trouble Inputs
	Reader Expander Trouble Inputs
	Output Expander Trouble Inputs
	Analog Input / Output Expander Trouble Inputs

	Programming the Service
	Appendix: Python Validation Scripts
	Controller Input
	Controller Output
	Controller Output - Multiple
	Controller Test Limits

