
AN-353

Protege GX Modbus Client Integration

Application Note

The specifications and descriptions of products and services contained in this document were correct at the time
of printing. Integrated Control Technology Limited reserves the right to change specifications or withdraw
products without notice. No part of this document may be reproduced, photocopied, or transmitted in any form or
by any means (electronic or mechanical), for any purpose, without the express written permission of Integrated
Control Technology Limited. Designed and manufactured by Integrated Control Technology Limited, Protege® and
the Protege® Logo are registered trademarks of Integrated Control Technology Limited. All other brand or product
names are trademarks or registered trademarks of their respective holders.

Copyright © Integrated Control Technology Limited 2003-2023. All rights reserved.

Last Published: 18-Apr-23 01:33 PM

AN-353 | Protege GX Modbus Client Integration | Application Note 2

Contents

Introduction 4

Prerequisites 4

Supported Modbus Devices 4

Capabilities 4

Physical Connections 6

Programming Steps 7

Enabling the Modbus Protocol 7

Adding the Data Values 7

Adding the Outputs 8

Adding the Analog Expanders 8

Further Programming 9

AN-353 | Protege GX Modbus Client Integration | Application Note 3

Introduction
Modbus is an industry standard communication protocol that is widely used for building automation. Modbus
devices communicate using a client-server architecture in which only one device (the client) can initiate
transactions (called queries). The other devices (servers) respond by supplying the requested data to the client, or
by taking the action requested in the query.

Protege GX offers two methods of integrating with Modbus systems:

Modbus Server Integration Modbus Client Integration

One or more Protege GX controllers act as Modbus
servers.

One Protege GX controller acts as a Modbus client.

The Modbus client reads and writes Protege GX inputs
and outputs.

The controller reads and writes digital inputs (inputs),
coils (outputs) and registers (data values) on
connected Modbus server devices.

Communication over ethernet (TCP/IP). Communication over RS-485.

Documented in Application Note 023: Protege GX
Modbus Server Integration.

Documented in Application Note 353: Protege GX
Modbus Client Integration.

This application note covers theModbus client integration, allowing a Protege GX controller to monitor and
control building automation devices such as thermostats, humidity controls and light sensors.

Previously the Modbus client was referred to as the "master" and server devices were referred to as "slave"
devices. This terminology has been deprecated by the Modbus Organization (see this press release).

Prerequisites
The following must be installed and operational:

Component Firmware Version Notes

Protege GX Controller 2.08.1355 or higher
The controller must have an available RS-485 reader port.
(i.e. not being used for door control).

Supported Modbus Devices
This integration can be used to monitor and control Modbus server devices that meet the following requirements:

⦁ The server device must have an RS-485 port, or be able to connect to an RS-485 interface module.

⦁ The server device must communicate using the Modbus RTU protocol.

It is the integrator's responsibility to validate any devices that will be integrated with Protege GX.

Capabilities
Each Protege GX controller has the following capabilities:

⦁ Scan up to 32 Modbus server devices connected via RS-485.

⦁ Read/Write a maximum of 16 items (digital inputs, coils and registers) per server device, of which up to 8 can
be registers.

The following table identifies which Modbus function codes are supported by the integration:

AN-353 | Protege GX Modbus Client Integration | Application Note 4

https://modbus.org/docs/Client-ServerPR-07-2020-final.docx.pdf

Function Type Function
Function
Code

Supported

Data
Access

Bit
Access

Physical Discrete Inputs Read Discrete Inputs 2

Physical and Virtual Coils/Outputs

Read Coils 1

Write Single Coil 5

Write Multiple Coils 15

16-Bit
Access

Physical Input Registers Read Input Registers 4

Internal Registers or Physical
Output Registers

Read Multiple Holding
Registers

3

Write Single Holding
Register

6

Write Multiple Holding
Registers

16

Read/Write Multiple
Registers

23

Mask Write Register 22

Read FIFO Queue 24

File Record Access
Read File Record 20

Write File Record 21

Diagnostics

Read Exception Status 7

Diagnostic 8

Get Com Event Counter 11

Get Com Event Log 12

Report Server ID 17

Read Device
Identification

43

Other
Encapsulated Interface
Transport

43

AN-353 | Protege GX Modbus Client Integration | Application Note 5

Physical Connections
In this integration, the controller communicates with the Modbus server devices via one of its RS-485 reader ports.
If you are using an RS-485 interface module, connect it to the server device as per the installation manual.

Prior to connecting each device to the network, ensure that it has a unique server address in the range 1-32.

D0/

NA

D1/

NBC BZ L2 L1 V+V-

Controller Reader Port 1/2

-

+

GND

Modbus Server 1

-

+

GND

Modbus Server 2

330R

A termination resistor should be placed at the end of the line. This is a 330 ohm resistor wired across the NA (+)
and NB (-) terminals of the last connected device.

AN-353 | Protege GX Modbus Client Integration | Application Note 6

Programming Steps
This section covers the programming required to set up this integration. In summary:

1. Enable the Modbus protocol on the controller's RS-485 reader port.

2. Create data values to represent the registers.

3. Create outputs to represent the digital inputs and coils.

4. Create analog expanders to represent the server devices. Enter commands to map the data values and
outputs to Modbus registers, digital inputs and coils.

5. Complete any further programming necessary for monitoring and controlling the Modbus devices.

Enabling the Modbus Protocol
The controller communicates with the Modbus server network using one of its onboard reader ports. First, enable
the controller's onboard reader expander if you have not already.

1. In Protege GX, navigate to Sites | Controllers.

2. In the Configuration tab, set Register as reader expander to an available reader expander address.

3. Navigate to Expanders | Reader expanders and add a reader expander record.

4. Set the Physical address to the address used above.

Then you must enable Modbus communications on the reader port that the Modbus network is connected to.

1. In Expanders | Reader expanders, select the controller's onboard reader expander.

2. Expand the Commands section and enter one of the following commands:
- If the Modbus network is connected to reader port 1:

PortOne = 17
- If the Modbus network is connected to reader port 2:

PortTwo = 17

3. Save the changes.

4. Wait for the changes to be downloaded to the controller, then right click on the reader expander record and
click Update module.

Adding the Data Values
One data value record is required for each Modbus register that is being monitored or controlled.

1. Navigate to Automation | Data values.

2. Click Add to add a new data value and give it a descriptive Name (e.g. Fridge A Temperature Control).

3. If the controller will write to this register (e.g. control the temperature), you may wish to set a Preset value.
Enter a value, then enable one or both of the following:

- Preset power up: The register will be set to the preset when the controller first powers up.
- Preset value: The register will be set to the preset whenever any programming is downloaded to the

controller.

These options are not used for registers that the controller is only reading from.

4. Save the data value.

5. Note the Database ID of the new data value record.

AN-353 | Protege GX Modbus Client Integration | Application Note 7

If you wish to display the data values on a status page or floor plan you will need to create a variable record for
each one in Automation | Variables.

Adding the Outputs
One virtual output record is required for each digital input or coil that is being monitored and each coil that is
being controlled.

1. Navigate to Expanders | Output expanders.

2. From the toolbar, select the Controller that is used for the Modbus integration.

3. Click Add to add a new output expander.

4. Enable the Virtual module option.

5. Set the Physical address to a value above existing physical expanders (e.g. 32).

6. Click Save.

7. In the popup window, disable Add trouble inputs then click Add now.

8. Navigate to Programming | Outputs and locate the expander's new outputs.

9. Give each output a descriptive name (e.g. Fridge 1 On/Off Status) and note the Database ID of the new record.

10. If necessary, create more output expanders to support additional outputs.

Adding the Analog Expanders
Each Modbus server device in the network is represented by an analog expander record in Protege GX.

1. Navigate to Expanders | Analog expanders.

2. From the toolbar, select the Controller that is used for the Modbus integration.

3. Click Add to create a new analog expander. Give it a descriptive name (e.g. Fridge 1).

4. Enable the Virtual module option. This will prevent the controller from generating health status messages for
this module.

5. Set the Physical address to the Modbus server address of the connected device.

6. Click Save.

7. In the popup window, set the Outputs to 0 and disable Add trouble inputs. Then click Add now.

Mapping the Registers, Digital Inputs and Coils

The following commands are used to map each component to the relevant record in Protege GX. Enter each
command on a new line. You can map up to 16 records per device, of which up to 8 can be registers.

⦁ To read a register, enter:

MbsReg = R,x,y
where x is the address of the register on the Modbus server device and y is the Database ID of the data value
to map it to.

⦁ To read and write to a register, enter:

MbsReg = RW,x,y
where x is the address of the register on the Modbus server device and y is the Database ID of the data value
to map it to.

⦁ To read a coil or digital value, enter:

MbsBit = R,x,y

AN-353 | Protege GX Modbus Client Integration | Application Note 8

where x is the address of the coil or digital input on the Modbus server device and y is the Database ID of the
output to map it to.

⦁ To read and write to a coil or digital value, enter:

MbsBit = RW,x,y
where x is the address of the coil or digital input on the Modbus server device and y is the Database ID of the
output to map it to.

As soon as at least one command has been entered and saved the controller will begin to scan for a Modbus
device with the matching address.

Some examples of commands are:

⦁ Read register 3 and store it as data value 16: MbsReg = R,3,16
⦁ Read and write register 15 and store it as data value 17: MbsReg = RW,15,17
⦁ Read digital input 5 and store it as output 433: MbsBit = R,5,433
⦁ Read and write coil 1 and store it as output 434: MbsBit = RW,1,434

Downloading Data Values to the Controller

Because the integration is programmed using commands, the data values are not automatically downloaded to
the controller. Some additional configuration is required to assign the data values to the controller so that they will
be downloaded by the software.

The first four data values on each server device can be assigned to the analog expander record.

1. Select the relevant analog expander.

2. In the Channel 1 tab, assign the first data value as the Channel 1 data value.

3. Repeat for Channel 2, Channel 3 and Channel 4.

4. Click Save.

The remaining four data values can be downloaded to the controller using a value compare programmable
function. This function is only used to associate the data values with the controller and does not need to be started
or run.

1. Navigate Automation | Programmable functions.

2. Select the relevant Controller in the toolbar.

3. Add a new programmable function with a name that describes its purpose (e.g. Function to Download Data
Values for Modbus Integration).

4. Set the Type to Value compare.

5. In the Value compare tab, select the Output to enable this function. This can be any output on the controller
which will control this integration. You may wish to use a spare virtual output for this purpose.

6. Use the Analog input data variable register, Set point data value, Hysteresis data value and Hysteresis time
data value fields to select the four remaining data values.

7. Click Save.

Once these steps have been completed all of the data values will be downloaded to the correct controller and can
be used to display and control the registers on the Modbus server devices.

The Controller column in the data values list may display the incorrect controller. This is a display issue only and
does not affect what is downloaded.

Further Programming
Protege GX provides a variety of programming options for monitoring and controlling the Modbus registers,
digital inputs and coils.

AN-353 | Protege GX Modbus Client Integration | Application Note 9

Manual Monitoring and Control
To monitor outputs, add them to a status page or floor plan. If you have write control, you can right click on the
output and select Activate, Deactivate or Activate timed.

To monitor a data value, you will need to create a variable:

1. Navigate to Automation | Variables.

2. Add a new variable with an appropriate name.

3. Set the Scale and Offset to convert the data provided by the Modbus register into a human-readable number.
This will depend on the server device.

4. Set the Data valuewhich this variable will display.

5. Click Save.

Now you can add this variable to a floor plan as normal. If you have write control, you can right click on the
variable and set the value.

Automated Monitoring and Control
A number of programmable functions are available to automatically monitor and control devices. These are
available in Automation | Programmable functions.

⦁ Logic control: Controls an output or output group based on the state of one or two triggering outputs. Several
logical operations are available.

⦁ Ripple output: Activates a series of outputs in a ripple pattern based on a single triggering output. This can be
used to stage large current devices and multiple lighting circuits.

⦁ Input follows output: Controls an input based on the state of an output. Can be used to activate alarms based
on an output state.

⦁ Value compare: Compares two data values and activates outputs based on their relative quantities. For
example, this can be used to control lighting circuits based on daylight sensor inputs.

⦁ Register counter: Increments or decrements a data value based on the state of an input.
⦁ Average: Calculates the average of up to 8 input data values and writes it to an output data value. For

example, this can be used to take an average of multiple temperature sensors.

⦁ Variable output compare: Compares a single input data value with a series of 'fixed point' data values. When
the input value reaches each fixed point an output data value is updated with a known quantity.

⦁ Floor temping: Manages an air tempering system with single-stage heating and cooling.

⦁ Roof top heat pack: Manages an HVAC system with up to 4 stages of heating and cooling and two stages of
dehumidification.

For more information about programming and using these functions, see the Protege GX Operator Reference
Manual.

AN-353 | Protege GX Modbus Client Integration | Application Note 10

Designers & manufacturers of integrated electronic access control, security and automation products.

Designed & manufactured by Integrated Control Technology Ltd.

Copyright © Integrated Control Technology Limited 2003-2023. All rights reserved.

Disclaimer:Whilst every effort has been made to ensure accuracy in the representation of this product, neither Integrated Control Technology Ltd nor its

employees shall be liable under any circumstances to any party in respect of decisions or actions they may make as a result of using this information. In accordance

with the ICT policy of enhanced development, design and specifications are subject to change without notice.

www.ict.co 18-Apr-23

	Introduction
	Prerequisites
	Supported Modbus Devices
	Capabilities

	Physical Connections
	Programming Steps
	Enabling the Modbus Protocol
	Adding the Data Values
	Adding the Outputs
	Adding the Analog Expanders
	Further Programming

