ICT Card Reader Configuration Guide The specifications and descriptions of products and services contained in this document were correct at the time of printing. Integrated Control Technology Limited reserves the right to change specifications or withdraw products without notice. No part of this document may be reproduced, photocopied, or transmitted in any form or by any means (electronic or mechanical), for any purpose, without the express written permission of Integrated Control Technology Limited. Designed and manufactured by Integrated Control Technology Limited, Protege® and the Protege® Logo are registered trademarks of Integrated Control Technology Limited. All other brand or product names are trademarks or registered trademarks of their respective holders. Copyright © Integrated Control Technology Limited 2003-2025. All rights reserved. Last Published: 01-Apr-25 9:37 AM # Contents | Introduction | 5 | |--|----| | About ICT Card Readers | 5 | | Programming ICT Card Readers | 5 | | Recommended Settings | 6 | | Maintenance | 7 | | Updating TSL Reader Firmware | 7 | | Updating tSec Reader Firmware | 7 | | Protege Config App | 9 | | Programming Summary | 9 | | Prerequisites | 9 | | Installing the Config App | 10 | | Logging In | 10 | | Config App Navigation and Settings | 11 | | Reader Configuration | 12 | | Config Management | 12 | | TLV Settings | 12 | | Programming a Card Reader | 23 | | Failed Programming | 23 | | Config Programming Examples | 25 | | Config Example: Enable OSDP | 25 | | Config Example: OSDP Baud Rate | 25 | | Config Example: OSDP Install Mode | 26 | | Config Example: Reader Address | 26 | | Config Example: Disable Card Technologies | | | Config Example: Enable Dual LED Mode | | | Config Example: LED Colors | | | Config Example: ISO14443 Gain for EV2 Tags | | | Config Example: Set Wiegand Output Mode | | | Config Example: Firmware Update Mode | | | Config Example: Factory Default | | | Config Example: Custom Credential | | | Config Example: Custom Mobile Credential | | | MIFARE Config Card | 35 | | Prerequisites | 35 | | | | | Config Card Settings | 35 | |---------------------------|----| | Basic Settings | 35 | | Advanced Settings | 36 | | Programming a Card Reader | 36 | | 125kHz Programming Card | 37 | | Prerequisites | 37 | | Entering Programming Mode | 37 | | 125kHz Programming | 39 | | 125kHz Reading Mode | 39 | | Wiegand Output Format | 39 | | LED Function | 40 | | Intelligent Tamper Mode | 40 | | Enable ASK (EM) Cards | 40 | | PIN Data Interface | 40 | | PSK Unscramble | 41 | | PSK Enable | 41 | | Factory Default | 41 | | Disclaimer and Warranty | 42 | # Introduction This configuration guide provides programming information and instructions for ICT card readers. This covers the following reader types: - TSL Readers - tSec Readers For installation instructions and technical specifications see the card reader installation manual, available from the ICT website. ## **About ICT Card Readers** ICT card readers are advanced-technology, high-frequency smart card radio frequency identification devices (RFID), specifically designed to enhance the functionality of security, building automation and access control by providing multiple format compatibility, high-speed data transmission and sabotage protection. They can operate using OSDP, intelligent RS-485 or Wiegand communications, and can be programmed to read a range of different card formats. While both reader models have advanced capabilities, the TSL reader provides additional functionality such as G-Prox II and PSK reading, offline wireless lock support, over-the-network firmware updates and enhanced encryption security. # **Programming ICT Card Readers** ICT card readers are programmed by applying a configuration profile consisting of specific TLV (Type Length Value) settings to enable, disable and configure reader options. To program a card reader you must disconnect and reconnect the power, then apply the configuration within **2 minutes** of the reader powering up. TSL card readers are programmed using the Protege Config App via Bluetooth® Wireless Technology. tSec readers provide multiple programming methods depending on the wireless technologies that they support: | Reader Technology | Programming Method | |-----------------------------------|---------------------------------------| | Bluetooth® Wireless Technology | Protege Config App (see page 9) | | 13.56MHz (MIFARE / DESFire / NFC) | MIFARE Config Card (see page 35) | | 125kHz | 125kHz Programming Card (see page 37) | See the Reader Editions section of the installation manual for the technologies supported by each edition. # **Recommended Settings** The default (out of the box) settings are designed for compatibility with existing sites. These are: - **Output mode**: TSL readers are in ICT RS-485 mode by default. tSec readers are in Wiegand mode by default, but switch to ICT RS-485 mode automatically when wired in the appropriate configuration. - Card and mobile credential encryption: Default ICT encryption keys. - Card technologies: All technologies supported by the reader are enabled by default. However, the default settings do not use the most secure encryption methods and can decrease the performance of the card reader. To achieve the highest level of security and performance, ICT recommends the following card reader settings: - Output mode: OSDP (Open Supervised Device Protocol) (see page 25). - **Card and mobile credential encryption**: Custom encryption keys specific to your site which can be ordered from ICT. For more information, see Application Note 352: Setting Up Custom Credential Encryption. - Card technologies: To achieve the best response time for reading cards, disable any card technologies (125kHz, 13.56MHz and Bluetooth® Wireless Technology) that you are not using on your site (see page 26). In addition, if your site does not use 125kHz (low frequency) cards, we strongly recommend that you disable this card technology. As 125kHz cards are unencrypted and easy to create and clone, this technology can provide a vector for attackers to gain access to the site. If you are transitioning a site from low frequency cards to high frequency cards using multi-technology readers, it is best practice to disable 125kHz reading when the site does not need it any more. # Maintenance # **Updating TSL Reader Firmware** TSL readers support over-the-network updates from the controller's web interface. - 1. Connect the TSL reader to a controller or reader expander using ICT RS-485 or OSDP configuration. - Readers connected in Wiegand configuration cannot be upgraded over the network. - 2. Log in to the controller's web interface. - 3. In Protege GX: Navigate to Application Software. - In Protege WX: Navigate to System | Application Software. - 4. Open the **Module** dropdown to view the card readers connected to the system. - TSL readers that support upgrade are displayed in white. - Readers that do not support upgrade are grayed out. This includes tSec readers, TSL readers with firmware below version 1.05.382, and third-party readers. - Readers are grayed out if the reader expander version is less than 1.12.605. - Readers connected via Wiegand are not displayed. - If no card readers appear in the dropdown, upgrade your controller to version 2.08.1498 (Protege GX) or 4.00.2261 (Protege WX), or higher. - 5. Select the reader to upgrade. - 6. Click **Upload Firmware** and select the new .bin file. - 7. The web interface will show progress as the controller uploads the firmware to the reader. The reader will remain operational and respond to card badges and PINs while it is loading the new firmware. - The warning in the **Update Module Firmware** section does not apply to TSL readers. Updating a TSL reader does not put the network into maintenance mode. - 8. When the upload is complete, the reader will flash purple for approximately 10 seconds while it reboots. It will not respond to card badges or PINs during this time. - 9. After rebooting, the reader will begin operating as normal with the new firmware. Click **OK** to close the window. You must refresh the page to see the new firmware version in the **Module** dropdown. # Updating tSec Reader Firmware The following steps describe how to update ICT tSec readers to the latest firmware. To complete the process, an RS-485 USB Converter and LoadIT software version 1.5 or later are required. To view the card reader's current firmware version, connect it to a controller or reader expander in ICT RS-485 or OSDP configuration. Log in to the controller's web interface, navigate to **Application Software** and open the **Module** dropdown to view the connected card readers. To update the card reader: - 1. Put the reader into boot mode by connecting the **blue**, **orange** and **brown** wires to the black (N-) wire. Alternatively, you can use the Protege Config App to apply the **Device Mode: Firmware Update Mode** TLV within 2 minutes of the reader starting up. - 2. Connect the reader to the RS-485 USB converter as pictured below. 3. The LEDs on the reader will flash blue and green to indicate it is starting in boot mode. The flashes will then slow to indicate the reader is now in boot mode and ready for the firmware update. You will now have approximately 30 seconds from the time you power on to load the firmware. For this reason it is best to configure the settings in LoadIT before you begin. ## **LoadIT Settings** - 1. Open LoadIT and configure the following settings. - 2. From the main window select the Serial Port tab. - 3. Select the Serial Port that the RS485-USB converter is connected on. You can confirm this by checking in the **Windows Device Manager** under Ports (COM & LTP). - 4. Once the serial port has been selected, click **OK**. - 5. From the main window select the **Setup Device** tab. - 6. In the **Select Device Type** section, select PRT-KLCD LCD User Station. - 7.
In the **Advanced Setting** section, select Ignore Module File Type (Dangerous). - 8. In the **Select Device Address** section leave it as 1 and click **OK**. - 9. From the main window, click the ellipsis button [...] next to the file name and select the firmware file for the reader. - 10. Click Open. - 11. Power on the reader and put it into boot mode (see steps above). The blue and green LEDs will flash indicating it is starting in boot mode. - 12. Select the **Update Device** tab in **LoadIT** and the update process will begin. - 13. Once the process has completed, the Status should say Module Restarted Function Complete. # Protege Config App The Protege Config App provides a secure, convenient and flexible method for programming ICT card readers over a Bluetooth® connection. # **Programming Summary** To program a reader using the config app: - 1. Log in to the app using your app account. - 2. Select your **Credential Profile**. Your credential profile is automatically assigned to your app account with your mobile credential and is based on the credential issuer and the site the credential was allocated to. - 3. Create a **Reader Configuration** (config) comprising the required TLV settings. - 4. Activate Bluetooth® on your device (if not already activated). - 5. Power cycle the reader you want to program. You must apply the config within two minutes of startup. - 6. Select the **config** to program the reader with. - 7. Hold your mobile device close to the reader and tap **Scan Closest** to apply the configuration. When programming is successful the reader will beep 4 times quickly, then restart. # **Prerequisites** ## Config App To use the config app you will need: - An app account - A mobile credential If you already have a Protege Mobile App account and mobile credential, these same login credentials can be used to access the config app. If you do not have a Protege mobile credential, contact ICT Customer Services to be issued one for use with the config app (product code: PRX-MCR). You can make a new app account after installing the app (see next page). ## Hardware Support All **TSL readers** and **Protege wireless locks** support the Protege Config App. **tSec readers** must meet the following requirements: • Firmware version 1.04.254 or higher It is not possible to specifically identify the firmware version on a reader. The version the reader was shipped with can be checked by contacting ICT Technical Support and providing the reader's serial number. Alternatively, upgrade the firmware to a known compatible version. Bluetooth® capability The sticker on the back of the reader identifies the hardware configuration. The Model code must contain **BT** to signify that the reader is Bluetooth® enabled. RGB LEDs (if configuring LED colors) ## Confirming Compatibility Reader compatibility can be easily checked using the config app. When programming the reader (see page 23), tap **Select Reader** to display a list of nearby readers that can be contacted over Bluetooth®. If the reader's serial number is displayed as a **Broadcast Address** (preceded by _R or _U), the reader is compatible with the config app. If only the reader model is displayed but not its serial number, then it cannot currently be configured using the app. The reader most likely requires a firmware upgrade before it can be configured with the app. # Installing the Config App To begin using the Protege Config App you will first need to download and install it on your mobile device. The app is available from the Google Play Store and from the App Store. ## Downloading for Android Devices - 1. On your Android device, navigate to the **Google Play Store**. - 2. Enter **Protege Config** into the search bar. - Select the Protege Config App. - 4. Tap Install. #### Downloading for iPhone / iPad - 1. On your iOS device, navigate to the **App Store**. - 2. From the search bar, enter Protege Config. - 3. Select the **Protege Config** App. - 4. Tap **GET**. # Logging In The Protege Config App uses the same account credentials as your Protege Mobile App. If you already have an account on the Mobile App you can simply use the same account to log in to the config app. On startup, a warning will advise you to close the Mobile App before configuring any readers. While the config app and mobile app can operate at the same time, transmissions from the Mobile App may interfere with Bluetooth® connections from the config app and cause reader programming to fail. If you do not have an existing account, it is easy to create a new one either by entering a new email address and password, or by linking to a social media account. Protege Config App data is linked to your account and not to the device the app is installed on. This enables you to log in to the app on multiple devices and retain your settings. Once you select a login method, ensure this is the only method you use to access the app. Each method creates a unique account which will not be able to access the mobile credential or configurations linked to other accounts. #### Logging In for the First Time - 1. Ensure that you have internet connection while you are setting up the app. - 2. Open the Protege Config App. - 3. You will be presented with a **Login** screen. When you log in for the first time, you can select your preferred authentication method: - Sign in using an existing Protege Mobile App account - Sign in with Facebook - Sign in with Google - Create new account Signing in with social media accounts is only available for Android. - 4. If creating a new account, you will be prompted to create new credentials (username and password) for use with this account. If signing in with social media, you may be asked to enter your credentials, or you may proceed automatically if you are logged in on your device. - 5. When your login method is accepted, you will be presented with the End-User License Agreement. To continue, read through the agreement and tap **Accept**. This screen is only displayed after your first login. - 6. Next you will be prompted to create a PIN for use with this account. Enter a unique four-digit PIN code, then re-enter the same PIN to verify it. - 7. From the drop-down, select how frequently you would like to be prompted to enter this PIN while using the config app. You can edit these settings and your PIN in the future from the **Account Settings** page. # Config App Navigation and Settings You can navigate the config app via the menu in the top left of the app. The following pages are available. - **Reader Configuration**: Configure ICT card readers. - **Wireless Locks**: Initialize and update Protege wireless locks. For instructions for setting up wireless locks, see the Protege Wireless Lock Configuration Guide. - Account Settings: Set and change your PIN and PIN request frequency. View and delete your account data. - Mobile Credential Settings: - View the details of your **Mobile Credentials**. - Set the **Bluetooth Proximity** (read distance for this device). - Scan to unlock a reader. Tap **Scan to Unlock** and hold your device near a card reader to transmit your credential. - **Logout**: Logs you out of the config app. # Reader Configuration The reader configuration page is used to configure ICT card readers. These settings apply to wired card readers only. They are not used for configuring wireless locks. When you first access the reader configuration page you will be prompted to select your Credential Profile. Your profile is automatically assigned to your app account with your mobile credential, based on the issuer of the credential, and typically corresponds to the site or group your credential was allocated to. If you do not have a credential profile, contact ICT Customer Services. # Config Management A config is a configuration profile consisting of any number of TLV (Type Length Value) settings that provide configuration programming for ICT card readers. Config programming examples are provided later in this document (see page 25). - 1. To create a new config, tap the + at the top right of the screen. - 2. Enter a **Config name** to describe the profile you are configuring. - 3. Tap Add TLV and select the required TLV setting from the list, then configure any associated settings. - 4. Once all **TLV** settings are configured, **Save** the new config. All saved configs associated with your account are displayed on the **Reader Configuration** page. Edit or delete configs by swiping left on the config, then tapping the **Edit** or **Delete** icon. ## **TLV Settings** The following TLV settings are available in the Protege Config App. **Important:** Many of the available TLV settings contain advanced configuration options that may render a reader unusable if applied incorrectly. Please ensure that you understand these settings and their impact before implementation, or call ICT Technical Support for assistance. ## Update Key (NFC & Bluetooth) This TLV can be used to conveniently update the custom mobile encryption key and associated card linkages programmed on the reader with the mobile credential encryption key associated with the **credential profile**. This only applies to sites which have a custom mobile credential with a registered encryption key. For more information, see Config Example: Custom Mobile Credential (page 33). • **Keyslot**: Specifies the mobile credential slot where the mobile credential encryption key will be stored. ## Mobile Credential Keyslot This setting is used to load custom mobile credential encryption keys onto the reader so that it can read a custom mobile access credential. It must be used in conjunction with the **Card Linkages** TLV (see page 17) to enable the NFC and Bluetooth® functionality to read the custom credential from the assigned keyslot. This only applies to sites which have a custom mobile credential with a registered encryption key. For more information, see Config Example: Custom Mobile Credential (page 33). • **Keyslot**
Specifies the mobile credential slot where the mobile credential encryption key will be stored. Keyslots O and 1 are reserved for the card settings lock login and OSDP session key respectively. ## **Keyslot Availability** | Keyslot | Description | |---------|--------------------------| | 0 | Card Settings Lock Login | | 1 | OSDP Session Key | | 2 | Available | | 3 | Available | | 4 | Available | While slots 0 and 1 can be used if not required for the card settings lock login or OSDP session key, it is recommended to avoid using these keyslots to prevent potential future issues if the configuration changes. ### **LED Mode** Set the reader to use either normally blue, normally green or dual LED mode. The default setting is single LED mode, normally blue. #### LED Mode: - Dual: Allows the signaling of both LEDs independently using the LED control lines - Blue: Blue LED is on by default - Green: Green LED is on by default Dual LED mode requires the reader to be wired with both the orange and brown LED control lines connected. ## **Backlight Level** Set the brightness of the keypad backlight (for readers with keypads). #### Backlight Level: - Disabled - Very Low - Low (default setting) - Medium - High - Very High #### **Device Mode** The Device Mode TLV is used to factory default the reader or change it to operate in a specific mode. The device mode must be the first TLV in the config, so when you add this TLV it will be automatically placed above any other TLVs programmed previously. #### Device Mode: - Firmware Update Mode: Put the reader into boot mode so that new firmware can be loaded. - Factory Default EEPROM: Default the reader back to its shipped factory default configuration. This **cannot be undone**. Once the reader is defaulted you will need to reapply all configuration programming. - OSDP Install Mode: Put the reader into OSDP installation mode so that it is ready to accept initiation of a secure channel session from the connected controller or module. - Wireless Lock Update Point Mode: Configure the reader to act as an update point reader in an offline wireless locking system. This setting can only be used with TSL readers that are wired to the controller's onboard reader expander. For more information and programming instructions, see the Protege Wireless Lock Configuration Guide. ## Wiegand Style Define the bit length style the reader will output, and specify transmission enforcement options. - **Style**: Specify the bit length for the Wiegand output. - 26 Bit Output - 27 Bit Output - 32 Bit Output - 34 Bit Output - Legacy Undefined Output: This is a legacy option that has no effect. - Legacy Undefined Output: This is a legacy option that has no effect. - 66 Bit Output - 37 Bit Output - 64 Bit Output - 37 Bit (No Site Code) - Kantech KSF Format - Legacy Undefined Output: This is a legacy option that has no effect. - Auto / Card Defined - 36 Bit Output The reader's default setting is Auto / Card Defined, where it will not attempt to modify the formatting on the card. For all other settings the reader will read the card and re-format the card data before sending it. - **Enforce Options**: Optionally specify a transmission enforcement option. - Enforce on CSN: Enforce the configured Wiegand style on CSN transmission. If this option is **not** enabled: - CSN will be sent as the complete CSN in auto mode. - CSN will be sent as a valid HID card in 26 or 34 bit Wiegand style (parity bit, CSN bytes, parity bit). - CSN will be padded or truncated in any other Wiegand style. - Enforce on OSDP: Enforce the configured Wiegand style on OSDP interpreted card transmission. If this option is not enabled, OSDP transmissions will not be formatted to the configured Wiegand style. #### 125kHz Formats The 125kHz Formats TLV is used to enable/disable specific 125kHz card types. You can disable 125kHz reading entirely by disabling all of these formats. #### 125kHz Formats: - Postech - HID - ICT - Guardtek - Em41xx - PSK Only TSL readers and dedicated tSec reader variants support PSK reading. - Guardall G-ProxII Only TSL readers and dedicated tSec reader variants support G-Prox II. ## **Output Mode** Set the reader output mode to configure its operating protocol. #### Output Mode: - Wiegand - ICT Smart Reader (RS485) - Custom Serial (RS485) - Smart Serial: This mode is valid for reader firmware up to and including version 1.04.260 - OSDP: This mode is valid for reader firmware 1.04.261 and above The reader output mode automatically switches to ICT Smart Reader (RS485) when connected with RS-485 wiring configuration. #### **Tamper** The Tamper TLV is used to enable/disable intelligent reader tamper mode for detecting readers which have been disconnected. When enabled, the reader will check in to the device it is connected to every 30 seconds. #### Custom RS485 Format Specify the format to use when the reader **Output Mode** has been set to Custom Serial (RS485) (see above). - Custom Format: Enter the string to configure the output format of data when in custom RS-485 output mode. - %s = Site Decimal - %S = Site Hex - %c = Card Decimal - %C = Card Hex - %e = CSN Decimal - %E = CSN Hex - %p = Padded CSN Decimal - %P = Padded CSN Hex For example: "%s:%c" will output 233:4555 for a card with a site code of 233 and card number of 4555. ## **Access Credentials** Customize the reader configuration to enable reading of different types of credentials. #### Changing this setting has the potential to render the reader unusable. This TLV only configures the credential structure. Before this can be utilized by the reader you will need to: - add the encryption key to a **Keyslot** (see page 22) - add your custom format string to a **Custom Card Format Slot** (see page 19) - create a Card Linkage (see next page) to link all the elements together A programming example is provided to help illustrate this process (see page 31). • **Slot**: Specifies the credential slot where the access credential configuration will be stored. The default slot assignments are displayed in the table below. The default credential types in slots 0-4 should **not** be removed under normal operation. Slots 5-8 are empty. | Slot | Credential | |------|----------------| | 0 | MIFARE Classic | | 1 | MIFARE Secured | | 2 | MIFARE DESFire | | 3 | ISO7816 (NFC) | | 4 | Bluetooth® | | 5 | Available | | 6 | Available | | 7 | Available | | 8 | Available | ### Credential Type: - Disabled: Disables the selected credential slot - Mifare Classic - Mifare DESFire - ISO7618 (NFC) - Bluetooth #### Additional options are specific to the credential type selected ### MIFARE Classic: - **Block**: The MIFARE block number - **Key Type**: Set the key type to type A or type B - **Keyslot**: The keyslot to use as the MIFARE Classic sector key - Flags: Select the Diversify Key option to enable key diversification - **Diversification Keyslot**: The keyslot to use for diversification (if enabled) #### MIFARE DESFire: - App ID The DESFire application ID to access - **AES Keyslot**: The keyslot to use for AES authentication - **File Number**: The file number to access in the DESFire application - **Key Number**: The DESFire keynumber to use for read access - **Diversification**: The diversification method to use - No diversification - ICT diversification - AV2 diversification #### ISO7816 (NFC): - App ID The DESFire application ID to access - **AES Keyslot**: The keyslot to use for AES authentication - **File Number**: The file number to access in the DESFire application #### Bluetooth: - **Keyslot**: The keyslot to use for creating the encrypted session - **Key Number**: The key number being sent in the challenge packet to the mobile device ## Card Linkages The Card Linkages TLV is used for linking credential types to custom card formats and encryption keys. When the reader finds a credential that it can read, the linkage configuration specifies where to find the custom card formats and encryption keys to interpret that credential type, and how the card data is encrypted. #### Changing this setting has the potential to render the reader unusable. - Linkage Slot: The card linkage slot where the linkage configuration will be stored - Flags: The decryption method to use: - AES 256 Decryption: If enabled, the reader expects data on the card to be encrypted with AES 256 in addition to the security on the card itself (e.g. MIFARE crypto1/DESFire key). - AES 256 Decryption CBC: If enabled, the reader expects data on the card to be encrypted with AES 256 with Cipher Block Chaining in addition to the security on the card itself. - AES IV In First Block: If enabled, the reader expects the IV (Initialization Vector) to be in the first block received from the card. Otherwise, it initializes the IV with all zeros. - Serial Diversified: If enabled, the reader expects the key for the encryption above to be diversified against the card serial number. - **Keyslot**: The keyslot to link the custom encryption keys that will be used to authenticate the access credential - Access Credential Slot: The slot to link the Access Credential configuration - **Format Slot**: The **Custom Card Format Slot** to link the custom format string which describes how to interpret data from the card being read ## **CSN Reading Mode** The CSN Reading Mode TLV is used to enable/disable CSN (Card Serial Number) reading for MIFARE, DESFire and other NFC cards. #### CSN Reading Mode: - Mifare CSN (ISO14443a3) - Mifare CSN Reversed (ISO14443a3) - ISO 14443-4 CSN (DESFire) - ISO 14443-4 CSN Reversed (DESFire) - ISO15693 CSN: This is a legacy option. ISO15693 CSN capable cards are no longer supported - ISO15693 CSN Reversed: This is a legacy option. ISO15693 CSN capable cards are no longer supported The reader will first attempt to read the card using the encoded access credential before reading CSN. CSN will only be sent from the reader if the card cannot be read using any of the configured credentials. ## **PSK Decryption** Enable the
reader to read PSK formatted Kantech, Tecom or Motorola cards for PSK capable readers. Only TSL readers and dedicated tSec reader variants support PSK reading. #### PSK Decryption: - Raw Decoding: Reads raw data. Does not attempt to decrypt. - Kantech - Tecom - Motorola T1 ## **Keypad Output Format** Define the data format the reader will use to send keypad input data. This configuration applies when sending PIN data over Wiegand only. #### Keypad Output Format: - ARK501 (Default) - 26 Bit - 4 Bit - 4 Bit Parity - 4 Bit Buffered - 4 Bit Parity Buffered - 36 Bit Output ## Low Frequency Flags The Low Frequency Flag TLV is used to enable reading of legacy HID low frequency formats, which may be required for backward compatibility on older sites. When enabled, the reader will interpret 125kHz HID cards using a legacy version of the HID format. When disabled, the reader will read 125kHz HID cards using the standard HID format. This is the default. There is currently no selection option to disable this programming once enabled. To disable low frequency flags, apply a **Hex** TLV with hex code **160100**. #### **Custom Card Format Slots** Allows the entry of a custom format string which describes how to interpret data from the card being read. #### Changing this setting has the potential to render the reader unusable. - **Slot**: The custom card format slot where the custom format configuration will be stored. - **Format**: Enter the required custom card format string. The string must be in ASCII format, up to a maximum of 64 ASCII characters. For example, %64r sets the format to 64 bit raw, so the reader will read the first 64 bits of data off the card. ## Custom Card Format ASCII Codes The custom card format is defined using ASCII codes. The following ASCII format codes are supported. - **%Xs**: The next **X bits** on the card will be interpreted as the **site code**. - **%Xc**: The next **X bits** on the card will be interpreted as the **card number**. - **%Xu**: The next **X bits** on the card will be **unused/ignored**. - **%Xr**: The next **X bits** on the card will be interpreted as **raw data**. That is, the data may be site code or card number. Exactly how the raw data is interpreted will depend on the configuration of your system. - **%Xk**: the following card data must match the key stored in **keyslot X** on the reader. The length of card data which must match is determined by the length of the key stored on the reader. - **%XmY**: the next **X bits** on the card must match the following **Y bits** of the ASCII format string. e.g. %32mcccc means the next 32 bits on the card must match the ASCII pattern of cccc. - **%XnY**: the next **X bits** on the card must **not** match the following **Y bits** of the ASCII format string. e.g. %32ncccc means the next 32 bits on the card must be other than the ASCII pattern of cccc. - **%XI**: the next X bits on the card will be interpreted as a **length**. This length will be stored and can subsequently be accessed by substituting '**I**' for the number of bits to be interpreted as some formatting character. e.g. %8|%|s means the next 8 bits represent the length value |. Once this length value has been read from the card the subsequent 'I' bits on the card will be interpreted as the site code. ## LED Color Settings The reader has an internal palette of 16 configurable colors. The **Index** in the color settings refers to a slot number in the palette. For example, the reader normally uses slots 5 and 11 to show Unlocked (green) and Locked (blue) respectively. Other slots in the palette are used for other designated functions (such as to indicate area state, function codes, or two factor authentication required). The LED Color TLV allows custom programming of the default reader LED colors by replacing the color assigned in the slots with a different color. Changing the color assigned to a slot changes all functions associated with the original color. A programming example is provided to help illustrate LED color configuration (see page 28). - **Color**: Select a color by tapping or dragging on the color picker. Alternatively, you can type a color code into the field below the color picker. Tap the **arrow** icons to switch between Hex, RGB and HSL color codes. - Note that the color displayed by the reader LEDs will not perfectly match the screen of your device. - Index: Defines the color slot to be updated. Each index corresponds to a particular function of the card reader. #### Color Slot Index The color slot index and the default color assigned to each slot are outlined in the table below. This table applies to raw TLVs programmed directly on the card reader only. Configurations programmed in Protege GX are adjusted by 1 for the controller's 'off' index (0), such that Red=1 through to Crimson=16. | Color Slot Index | Default Color | |------------------|---------------| | 0 | Red | | 1 | Amber | | 2 | Orange | | 3 | Yellow | | 4 | Lime | | 5 | Green | | 6 | Mint | | 7 | Turquoise | | 8 | Cyan | | 9 | Sky Blue | | 10 | Cobalt | | 11 | Blue | | 12 | Violet | | 13 | Purple | | 14 | Magenta | | 15 | Crimson | Color slot 5 is the default color for access granted. Color slot 11 is the default reader idle color. Changing the default colors will mean the reader LEDs no longer display as expected for events and functions, which may complicate support requests. It is recommended to keep a register of any LED color changes. ## Wiegand Site Code The Wiegand Site Code TLV is used to configure the site code sent with keypad input data in 26 bit and 36 bit Wiegand keypad output formats (see page 14). Both of those keypad formats have a site code which is sent along with the PIN. This TLV allows you to define that site code. • Wiegand Site Code: The site code may be entered in decimal or hexadecimal format. This configuration applies when sending PIN data over 26 bit and 36 bit Wiegand only. #### Reread Mode Configure the reader to continuously reread a card that is kept within range. This option can be used with the tSec Extra Card Holder Cover (Ordering code: PRX-TSEC-XCDH). The reader will send a card read to the controller every 3 seconds while a card is present in front of the reader, regardless of whether the card has been read before. The reader can also be set to silently reread the card, where it disables the beeps generated when the card is read. #### Reread Mode: - Enable Reread - Silent Reread There is currently no selection option to disable this programming once enabled. To disable reread mode, apply a **Hex** TLV with hex code **200100**. #### Reader Address The Reader Address TLV allows you to program the reader's address configuration. There are two situations where you may have to program the reader address: - In ICT RS-485 mode, the default address is 0 (entry). For an exit reader, set the address to 1. - In OSDP mode, the readers used for entry and exit on the same door must have different addresses. These are typically 0 (default) for entry and 1 for exit. tSec readers only allow the address to be programmed when the green and orange wires are **not** connected together. When the reader's green and orange wires are joined it is hardwired to **always** use 1 as its address. • Reader Address: Enter the address to program the reader with. The maximum supported address is 127. ## **Uart Configuration** Define the baud rate of the RS-485 interface for compatibility with third-party systems. #### Baud: - 4800 - 9600 - 14400 - **-** 19200 - 38400 - 57600 - 115200 #### Hex An open field for entering a hex code to program a custom TLV. • **Hex**: Enter the custom TLV hex code to achieve the desired programming. #### Custom TLVs Custom TLVs can be used to send configuration commands to a reader. A TLV consists of a type definition, data length measured in bytes (which does not include the type or length), and the data value itself. The type and length are fixed in size, and the value field is of variable size. - **Type**: Specifies the setting or configuration type that the value applies to. - **Length**: The size of the value field in bytes. - Value: The variable-sized series of bytes containing the data that will be applied to the configuration. This setting requires high level understanding of TLV programming and should not be used unless directed by documentation or the ICT Technical Support team. This setting has the potential to render a reader unusable. ## Keyslot There is currently no preconfigured config app TLV for loading custom encryption keys for non-mobile credentials onto the reader. This is achieved by applying a custom Hex TLV (see above). The following TLV structure is used to create a hex code which will load custom encryption keys onto the reader. | Туре | Length | Value | |------|--------|-------------------------------| | 0x03 | ≤ 33 | [up to 32 byte key] [keyslot] | The type (03) is followed by the length (in bytes) and the value, made up of the encryption key (up to 32 bytes) and the keyslot where the encryption key will be stored (1 byte). Each key is assigned to a specific slot. ## TLV Example ### **Keyslot Availability** Keyslots 0 and 1 are reserved for the card settings lock login and OSDP session key respectively. | Keyslot | Hex | Description | |---------|------|--------------------------| | 0 | 0x00 | Card Settings Lock Login | | 1 | 0x01 | OSDP Session Key | | 2 | 0x02 | Available | | 3 | 0x03 | Available | | 4 | 0x04 | Available | # Programming a Card Reader Once the required reader config is available in the config app, it can be applied to individual readers via Bluetooth® communication. ICT card readers can only be programmed within 2 minutes of startup. In order to program the reader you will need to disconnect power and complete programming within 2 minutes of powering up. When you view readers in the config app, each individual reader has a name based on its serial number. Most readers have a name in the format _R<SERIALNUMBER> (e.g.
_RF19E3331). However, update point readers used for offline wireless locking systems have names in the format _U<SERIALNUMBER> (e.g. _UF19E3331). ### Programming a Card Reader using the Protege Config App - 1. Activate Bluetooth® on your device. - 2. In the Config App, navigate to the **Reader Configuration** page and select the appropriate **Credential Profile**. - 3. Tap the required config to apply to the reader. The selected config will be marked as ACTIVE. - 4. Power cycle the reader that requires programming. The following steps must be completed in the next 2 minutes. - 5. To apply the selected config to the nearest reader, place the device with the app close to the reader and tap **Scan Closest**. - The app should display Connecting to reader _R<SERIALNUMBER>. If there is no response, the device may need to be closer to the reader. - When programming is successful, the app will display the message Configuration of _R<SERIALNUMBER> successful and the reader will beep several times quickly and then restart. - If a power cycle is required, the app will display the message Failed to configure _R<SERIALNUMBER>. Configuration timeout. Please restart the reader. - 6. To view and select from a list of nearby readers, tap **Select Reader**. - If the reader is compatible, its **Broadcast Address** (_R<SERIALNUMBER>) will be displayed in the list. - If only the reader model is displayed, this reader cannot be configured using the app. - The number to the right identifies the decibel response. The smaller the value (i.e. the closer to zero), the nearer the reader is to the device. The **Bluetooth Proximity** setting in **Mobile Credential Settings** can be adjusted to exclude readers that are further away. - 7. Identify the appropriate reader and tap **Apply**. - The app should display Connecting to reader _R<SERIALNUMBER>. - When programming is successful, the app will display the message Configuration of _R<SERIALNUMBER> successful and the reader will beep several times quickly and then restart. - If a power cycle is required, the app will display the message Failed to configure _R<SERIALNUMBER>. Configuration timeout. Please restart the reader. - If the reader is not compatible, the app will display the message Failed to configure <READER>. Reader disconnected. # Failed Programming Sometimes reader programming can fail. This may occur because of Bluetooth® connection interference, such as from the mobile app, invalid config programming, or incorrect reader firmware. If programming is unsuccessful the reader will respond with **3 long beeps** (as opposed to the 4 short beeps when programming is completed successfully), and then restart. If reader programming fails you should attempt to apply the config to the reader again, as the failure may have been caused by temporary interference. If the reader continues to reject the programming, attempt to apply a previously applied config. Depending on the outcome, the new config may need to be checked or firmware may need to be updated. Previous programming may also need to be reapplied if there is a chance that earlier programming was unsuccessful. # **Config Programming Examples** The following examples illustrate programming some common card reader configuration requirements, using the config app. # Config Example: Enable OSDP The following programming example demonstrates how to create a config that enables the card reader to use the OSDP communication protocol. - 1. Log in to the Protege Config App, using your app account. - 2. Select your Credential Profile. - 3. Add a new Reader Configuration called OSDP Output Mode. - 4. Tap the Add TLV dropdown and select the Output Mode option. - 5. Tap the dropdown and select **OSDP**. - 6. Tap Save. You can now apply the configuration to the required reader(s). Power cycle the reader and select and apply your new OSDP Output Mode config within two minutes of startup. # Config Example: OSDP Baud Rate For a card reader operating in OSDP mode to communicate with an OSDP server, the reader must have the same baud rate setting as the reader port it is connected to. The default reader baud rate is 38400. ICT card readers support the following baud rates: | Supported Baud Rates | |----------------------| | 4800 baud | | 9600 baud | | 19200 baud | | 38400 baud (default) | | 57600 baud | | 115200 baud | The following programming example demonstrates how to create a config that sets the reader baud rate to 9600. - 1. Log in to the Protege Config App, using your app account. - 2. Select your Credential Profile. - 3. Add a new Reader Configuration called Baud Rate 9600. - 4. Tap the Add TLV dropdown and select the Uart Configuration option. - 5. Set the **Baud** to 9600, then tap **Save**. You can now apply the configuration to the required reader(s). Power cycle the reader and select and apply your new Baud Rate 9600 config within two minutes of startup. For more information on configuring readers to communicate using OSDP protocol, see Application Note 321: Configuring ICT Readers for OSDP Communication. ## Config Example: OSDP Install Mode The following programming example demonstrates how to create a config that puts the reader into OSDP installation mode so that it is ready to accept initiation of a secure channel session. ICT readers are ready to pair out of the box - this config is only required when you need to remove the pairing with the existing module and start a new secure channel session with a different module. This must be the **first** TLV in the config. - 1. Log in to the Protege Config App, using your app account. - 2. Select your Credential Profile. - 3. Add a new Reader Configuration called OSDP Install Mode. - 4. Tap the **Add TLV** dropdown and select the **Device Mode** option. As it needs to be the first TLV in the config, the Device Mode TLV will be added above any existing TLVs. - 5. Tap the dropdown and select **OSDP Install Mode**. - 6. Tap Save. You can now apply the configuration to the required reader(s). Power cycle the reader and select and apply your new OSDP Install Mode config within two minutes of startup. ## Config Example: Reader Address This TLV is used to configure a reader as an entry (0) or exit (1) reader in ICT RS485, OSDP and Smart Serial output modes. tSec readers only allow the address to be programmed when the green and orange wires are **not** connected together. When the reader's green and orange wires are joined it is hardwired to **always** use 1 as its address. - 1. Log in to the Protege Config App, using your app account. - 2. Select your Credential Profile. - 3. Add a new Reader Configuration named appropriately (e.g. Reader Address 01 Exit Reader). - 4. Tap the Add TLV dropdown and select the Reader Address option. - 5. Set the **Reader Address** to the required address, then tap **Save**. You can now apply the configuration to the required reader(s). Power cycle the reader and select and apply your new reader address config within two minutes of startup. # Config Example: Disable Card Technologies It is strongly recommended to disable any card technologies that you are not using on your site. This improves the performance and response time of the card reader, as it does not have to test multiple technologies to determine which one it should use for each credential. We especially recommend that you disable 125kHz reading on multi-technology models if low frequency cards are not used on site. As 125kHz cards are unencrypted and easy to create and clone, this technology can provide a vector for attackers to gain access to the site. It is not possible to disable Bluetooth® Wireless Technology on tSec readers. #### TSI Readers TSL readers support the **Card Reader Protocol Disable** TLV, which allows you to select which technologies to enable and disable using a single TLV. - 1. Add a new config with a relevant name (e.g. Disable 125kHz). - 2. Tap Add TLV and select Hex. - 3. In the **Hex** field, enter the hex code that matches the card technologies you need: | 125kHz | 13.56MHz | Bluetooth® | Hex Code | |-------------|----------|------------|----------| | > | Ø | Ø | 370100 | | • | | Ø | 370101 | | Ø | Ø | | 370102 | | • | | | 370103 | | | Ø | Ø | 370104 | | | | Ø | 370105 | | | Ø | | 370106 | - 4. Tap Save. - 5. Power cycle the reader you wish to program. - 6. Tap the new config to activate it. - 7. Hold your mobile device close to the reader and tap **Scan Closest** to apply the configuration. Disabling Bluetooth® Wireless Technology does not prevent configuration of the reader using the config app. #### tSec Readers: Disable 125kHz - 1. Add a new config called Disable 125kHz. - 2. Tap Add TLV and select 125kHz Formats. - 3. Tap 125kHz Formats. Disable all of the formats in the list, then tap OK. - 4. Tap Save. You can now apply the configuration to the required reader(s). Power cycle the reader and select and apply your new config within two minutes of startup. ## tSec Readers: Disable 13.56MHz - 1. Add a new **Reader Configuration** called Disable 13.56MHz. - 2. Tap Add TLV and select Access Credentials. - 3. Set the **Slot** to 0. - 4. Set the **Credential Type** to Disabled. - 5. Add two additional **Access Credentials** TLVs to disable slot 1 and slot 2. - 6. Tap Save. You can now apply the configuration to the required reader(s). Power cycle the reader and select and apply your new config within two minutes of startup. ## Config Example: Enable Dual LED Mode By default, ICT card readers operate in single LED mode (when wired in Wiegand configuration). To enable dual LED mode you need to change the reader programming. Dual LED mode requires the reader to be wired with both the orange and brown LED control lines connected. TSL readers do not support dual LED mode. - 1. Log in to the Protege Config App, using your app account. - 2. Select your Credential Profile. - 3. Add a new Reader Configuration called
Dual LED Mode. - 4. Tap the **Add TLV** dropdown and select the **LED Mode** option. - 5. Set the **LED Mode** to Dual, then tap **Save**. You can now apply the configuration to the required reader(s). Power cycle the reader and select and apply your new Dual LED Mode config within two minutes of startup. # Config Example: LED Colors The following programming example demonstrates how to create a config that changes the LED colors displayed by card reader to indicate when a door is locked or unlocked. - 1. In the Config App, navigate to the **Reader Configuration** page and select the appropriate **Credential Profile**. - 2. Tap the + icon (top right) to create a new config. Give the config a Name. - 3. Tap **Add TLV** to open the dropdown. - 4. Select **LED Color Setting** and tap **OK**. - 5. Tap on the **Color** field to display color details. Select a color by tapping or dragging on the color picker. Alternatively, you can type a color code into the field below the color picker. Tap the **arrow** icons to switch between Hex. RGB and HSL color codes. Note that the color displayed by the reader LEDs will not perfectly match the screen of your device. - 6. Tap on the **Index** field to enter an index number. Each index corresponds to a particular function of the card reader. In this case, select 5, which represents the Door Unlocked function. - 7. Tap Save. - 8. Add another TLV with the LED Color Setting option. Select another color as required. - 9. Set the **Index** to 11, corresponding to the Door Locked function. Tap **Save**. - 10. Tap **Save** again to save the config. You can now apply the configuration to the required reader(s). Power cycle the reader and select and apply your new LED configurations within two minutes of startup. # Config Example: ISO14443 Gain for EV2 Tags The ISO 14443 Modulation and Gain TLV is used to customize reader modulation and gain settings to allow the reader to read specific frequency formats. This setting configures the MFRC522 NFC chip, which controls the 13.56MHz antenna. MIFARE, DESFire and mobile NFC are all affected by this setting. This TLV is not supported by the TSL range of readers, which use a different NFC chip. #### This setting has the potential to prevent the reader from reading 13.56MHz cards, including programming cards. To read DESFire EV2 tags, the ISO14443 gain should be set to 6. Some card reader firmware versions do not contain the required ISO14443 gain configuration by default, so it is necessary to program the configuration. - 1. Log in to the Protege Config App, using your app account. - 2. Select your Credential Profile. - 3. Add a new Reader Configuration called ISO14443 Gain for EV2 Tags. - 4. Tap the **Add TLV** dropdown and select the **Hex** option. - 5. In the **Hex** field, enter the ISO14443 Gain 6 hex code **180106**, then tap **Save**. You can now apply the configuration to the required reader(s). Power cycle the reader and select and apply your new ISO14443 Gain for EV2 Tags config within two minutes of startup. # Config Example: Set Wiegand Output Mode To configure the reader to output Wiegand data: - 1. Log in to the Protege Config App, using your app account. - 2. Select your Credential Profile. - 3. Add a new Reader Configuration called Wiegand Output Mode. - 4. Tap the Add TLV dropdown and select the Output Mode option. - 5. Set the **Output Mode** to Wiegand Output, then tap **Save**. You can now apply the configuration to the required reader(s). Power cycle the reader and select and apply your new Wiegand Output Mode config within two minutes of startup. # Config Example: Firmware Update Mode Before firmware can be updated on ICT card readers, the reader must be put into firmware update mode, also known as boot mode. This must be the **first** TLV in the config. - 1. Log in to the Protege Config App, using your app account. - 2. Select your Credential Profile. - 3. Add a new Reader Configuration called Firmware Update Mode. - 4. Tap the **Add TLV** dropdown and select the **Device Mode** option. As it needs to be the first TLV in the config, the Device Mode TLV will be added above any existing TLVs. - 5. Tap the dropdown and select **Firmware Update Mode**. - 6. Tap Save. You can now apply the configuration to the required reader(s). Power cycle the reader and select and apply your new Firmware Update Mode config within two minutes of startup. When the config is applied the LEDs on the reader will flash to indicate it is starting in boot mode. The flashes will then slow to indicate the reader is in boot mode and ready for the firmware update. You will have approximately 30 seconds from the time you power the reader to load the firmware. # Config Example: Factory Default The following programming example demonstrates how to create a config that will default the reader back to its shipped factory default configuration. This must be the **first** TLV in the config. - 1. Log in to the Protege Config App, using your app account. - 2. Select your Credential Profile. - 3. Add a new Reader Configuration called Factory Default. - 4. Tap the Add TLV dropdown and select the Device Mode option. As it needs to be the first TLV in the config, the Device Mode TLV will be added above any existing TLVs. - 5. Tap the dropdown and select **Factory Default EEProm**. - 6. Tap Save. You can now apply the configuration to the required reader(s). Power cycle the reader and select and apply your new Factory Default config within two minutes of startup. This cannot be undone. Once the reader is defaulted you will need to reapply all configuration programming. # Config Example: Custom Credential This programming example will demonstrate the process for one of the more complex config scenarios: programming a reader to read a custom credential. In this scenario we will create a config to program the reader to read a DESFire card, using the following steps: - 1. Add the **encryption key** for our DESFire card into a **keyslot**. - 2. Configure the DESFire access credential settings. - 3. Configure a format string that matches the **data format** of the card. - 4. Create a **card linkage** which links these components together so that the reader can decrypt the card data and find the custom card format and encryption key to interpret the DESFire credential type. This is a hypothetical scenario. Before programming a custom credential TLV you would need to know the specific credential configuration requirements, such as App ID, key number, data format, etc. #### Add the Encryption Key - 1. Tap **Add TLV** and select the **Hex** option. #### Configure the DESFire Credential Credential settings are configured using the Access Credentials TLV (see page 16). - 1. Tap Add TLV and select Access Credentials. - 2. Apply the following access credential configuration: - **Slot**: 7 - Credential Type: Mifare DESFire - App ID: A1B2C3 - AES Keyslot: 3 - File Number: 0 - Key Number: 1 - **Diversification**: AV2 Diversification #### Configure the Format String Our format string needs to be added using the Custom Card Format Slots TLV (see page 19). The format string needs to match the data format of our DESFire card. In this example we will use 64 bit raw, so the reader will read the first 64 bits of data off the card, and we will add it to slot 6. - 1. Tap Add TLV and select Custom Card Format Slots. - 2. Set the **Slot Number** to 6. - 3. Tap **Format** and enter the format string 25363472. Custom card formats must be entered using ASCII code. 25363472 is the ASCII code for %64r (64 bit raw). ## Create a Card Linkage Finally, we can create our card linkage to tie everything together, using the Card Linkages TLV (see page 17). For our scenario, we need to define the card linkage parameters as follows: - 1. Tap Add TLV and select Card Linkages. - 2. Set the following card linkage configuration: - Linkage Slot: 6 - **Flags**: AES 256 Decryption - **Keyslot**: 2 (this is the keyslot where we stored our encryption key) - Access Credential Slot: 7 (this is the slot where we stored our DESFire credential configuration) - **Format Slot**: 6 (this is the slot where we stored our card format string) ### Save and Apply With all the components completed you can now **Save** the config. The new credential programming can be applied to the reader within 2 minutes of startup. # Config Example: Custom Mobile Credential The following programming example demonstrates how to create a config that will enable the reader to read a custom mobile credential. This programming only applies to sites which have a custom mobile credential with a registered encryption key. While ICT readers are automatically enabled to read mobile credentials, registered custom mobile credentials have an encryption key assigned to the mobile credential profile and readers need to be programmed to decrypt the associated credentials. There are two methods available for configuring custom mobile credential programming in the config app. You can use either the Mobile Credential Keyslot TLV along with the associated Card Linkages TLV, or use the Update Key (NFC & Bluetooth) TLV which automatically configures the card linkages in the background. ## Mobile Credential Keyslot - 1. Define the **mobile credential keyslot** where the mobile credential encryption key will be stored. - 2. Create a **card linkage** to configure NFC functionality to read the custom credential. - 3. Create a **card linkage** to configure Bluetooth® functionality to read the custom credential. #### Define the Mobile Credential Keyslot You first need to define the slot where the profile's mobile credential encryption key will be stored. Slots 0 and 1 are generally reserved, so only slots 2, 3 and 4 are available (see page 12). - 1. Log in to the Protege Config App, using your app account. - 2. Select your Credential Profile. This **must** be the profile with the mobile credential encryption key assigned. - 3. Add a new Reader Configuration named
appropriately (e.g. Custom Mobile Credential). - 4. Tap the **Add TLV** dropdown and select the **Mobile Credential Keyslot** option. - 5. Set the **Keyslot** to a suitable slot number. #### Configure the NFC Card Linkage - 1. Tap Add TLV and select Card Linkages. - 2. Apply the following card linkage configuration: - Linkage Slot: 3 - Flags: Enable both AES 256 Decrypt CBC and AES IV in first block. - **Keyslot**: Set to the **Mobile Credential Keyslot** number defined above. - Access Credential Slot: 3 - Format Slot: 3 ### Configure the Bluetooth® Card Linkage - 1. Tap Add TLV and select Card Linkages. - 2. Apply the following card linkage configuration: - Linkage Slot: 4 - Flags: Enable both AES 256 Decrypt CBC and AES IV in first block. - **Keyslot**: Set to the **Mobile Credential Keyslot** number defined above. - Access Credential Slot: 4 - Format Slot: 4 #### Save and Apply With all the components completed you can now **Save** the config. The custom mobile credential programming can be applied to the reader within 2 minutes of startup. ## Update Key (NFC & Bluetooth) The above process can also be simplified using the Update Key (NFC & Bluetooth) TLV, where only the keyslot needs to be configured. The NFC and Bluetooth® card linkages are automatically configured in the background. - 1. Log in to the Protege Config App, using your app account. - 2. Select your Credential Profile. This **must** be the profile with the mobile credential encryption key assigned. - 3. Add a new Reader Configuration named appropriately (e.g. Custom Mobile Credential). - 4. Tap the Add TLV dropdown and select the Update Key (NFC & Bluetooth) option. - 5. Set the **Keyslot** to a suitable slot number. Slots 0 and 1 are generally reserved, so only slots 2, 3 and 4 are available (see page 12). 6. You can now **Save** the config and apply to the required reader(s) within two minutes of startup. # MIFARE Config Card A MIFARE config card provides a quick and secure method for programming a card reader. TSL card readers do not support config cards. Instead, use the Protege Config App (see page 9). # Prerequisites Using a Config Card to program a card reader requires a suitably configured MIFARE Card. These can be ordered from the ICT customer services team using order code: PRX-ISO-CONFIG. Alternatively, cards can be configured using the ICT Encoder Client. This provides a flexible and convenient method for programming readers as and when needed. For information on the encoding process and requirements, refer to the ICT Encoder Client User Manual, available on the ICT Website. In order to use a Config Card to program a card reader, the reader must meet the following requirements: • Firmware version 1.04.229 or higher. It is not possible to specifically identify the firmware version on a reader. The version the reader was shipped with can be checked by contacting ICT Technical Support and providing the reader's serial number. Alternatively, upgrade the firmware to a known compatible version. - RGB LEDs (if configuring LED colors) - RS-485 wiring (if configuring LED colors) # **Config Card Settings** Config cards can be configured or ordered with programming configurations for a range of basic and advanced card reader settings. # **Basic Settings** The following settings cover the most common configurations for reader programming. - **LED Mode**: Set the reader to use Blue ON, Green ON, or Dual LED mode. - Backlight Setting: Adjust the keypad backlight brightness level. - Output/Interface Mode: Set the reader to output in Wiegand, ICT Smart Reader (RS-485), a Custom Serial (RS-485) format, or OSDP protocol. - **Wiegand Format Definition**: Set the data format the reader will use when sending card data over RS-485 or Wiegand. - **Keypad Format Definition**: Set the data format the reader will use when sending PIN data over Wiegand ONLY. - Low Frequency Prox Formats: Enable/Disable specific 125kHz card types. - Postech/Paradox - HID - ICT - Custom - EM ASK 41x - PSK (Indala) PSK card formats require specific hardware to operate. - 125 Format 8 - 125 Format 11 - Tamper Operation: Enable intelligent tamper for detecting readers that have been disconnected. - **Repeat Reading Functions**: Allow the reader to continuously reread a card that is kept within range. The reader can also be set to silently reread the card. This option can be used with the PRX-TSEC-XCDH card holder cover - Low Frequency Prox Options: Enable/Disable reading of various low frequency formats. - Clone Card Options: Enable/Disable clone card reading and clone card destroy. - Card Serial Number Reading: Enable/Disable reading of CSN for MIFARE, DESFire, and other NFC cards. - Wiegand Site Code: The site code to send when using Keypad Formats that can send a site code. ## **Advanced Settings** The following settings include more advanced configurations that affect critical reader operation. **Important**: It is possible to prevent a reader from reading cards, **INCLUDING CONFIGURATION CARDS**, using some of these settings. Only use advanced configuration settings if you have been instructed to do so by ICT Technical Support. If you are not certain please get in touch with the Technical Support team. • **Bluetooth Power Output**: Manually set the power that the BLE module outputs, effectively controlling the Bluetooth reading range for the reader. Changing this setting can cause the Bluetooth on a reader to stop working. - **Custom RS485 Format**: Specifies the RS-485 format to use if the reader has been set to Custom Serial Output Mode. - **Custom Card Format**: Allows the entry of a custom format string which describes how to interpret data from the card being read. **Changing this setting can stop a reader from reading cards.** Consult ICT Support before using this setting. - **Encryption Key Slot**: Used to load custom Encryption Keys onto the reader. Must be used in conjunction with Credential Type and Credential Format Link settings. - **Credential Type**: Used to configure the details of reading of different types of credentials. - Changing this setting can stop a reader from reading cards. Consult ICT Support before using this setting. - Credential Format Link: Used to link Credential Types, Custom Card Formats, and Encryption Keys. Changing this setting can stop a reader from reading cards. Consult ICT Support before using this setting. # Programming a Card Reader Once the required Config Card is available, it can be used to easily program readers. ICT card readers can only be programmed within 2 minutes of startup. In order to program the reader you will need to disconnect power and complete programming within 2 minutes of powering up. #### To program a Card Reader using a Config Card - 1. Power cycle the reader to be programmed. The configuration must be completed in the next 2 minutes. - 2. To apply the new configuration to the reader, place and hold the config card close to the reader. - 3. When programming is successful, the reader will beep 4 times quickly and then restart. If the reader beeps 3 times slowly the configuration has failed. Wait for the reader to restart and try again. # 125kHz Programming Card 125kHz capable card readers can be programmed using a 125kHz programming card. TSL card readers do not support programming cards. Instead, use the Protege Config App (see page 9). # **Prerequisites** Using a 125kHz programming card to program a card reader requires a suitably configured 125kHz programming card. These can be ordered from the ICT support team using order code: PRX-PROG-LF. In order to use a 125kHz card to program a card reader, the reader must meet the following requirements: • Firmware version 1.04.229 or higher . It is not possible to specifically identify the firmware version on a reader. The version the reader was shipped with can be checked by contacting ICT Technical Support and providing the reader's serial number. Alternatively, upgrade the firmware to a known compatible version. # **Entering Programming Mode** Programming mode is entered by presenting a 125kHz programming card to the unit within the first 2 minutes of power being applied. The reader beeps twice to indicate that it has entered programming mode. Data entry and the programming menu will time out after 2 minutes of no activity and reverts back to normal activity. Any incomplete programming changes will be lost. #### To program the reader: - 1. Present the 125kHz programming card to the reader to enter **Programming Mode**. - 2. Wait for the reader to beep twice. - 3. Present the same card to the reader a number of times in quick succession to indicate the **Address** of the required **Programming Option**. See the Programming Option Addresses table below. - 4. Wait for the reader to beep twice. - 5. Present the same card a number of times in quick succession to indicate the required **125kHz Setting**. The settings for each programming option are outlined in the tables below. - 6. Wait for the reader to beep twice, indicating the data has been programmed correctly. At this stage the reader is waiting for a new address to program. - 7. If additional settings are required, repeat the above steps. - An invalid entry will result in a long tone being generated. The data can be entered again, or you can allow the reader to time out to select another address. - 8. Once complete, allow the programming interface to time out and return to normal operation. ## Programming Example ## Programming the Interface to output 26 Bit Wiegand: - 1. Present the programming card to the reader once to initiate **Programming Mode**. The card reader will respond by beeping twice to indicate that Programming Mode has been entered. - 2. Once Programming Mode has been entered, present the programming card twice to enter **Address 2**, the **Programming Option** for Wiegand Output Format. The card reader will respond by beeping twice to indicate that it has entered the Wiegand Output Format
menu. - 3. Next, present the programming card twice, corresponding with the **125kHz Setting** (2) for 26 Bit Wiegand. Wait for the reader to beep twice, indicating the data has been programmed correctly. - 4. Continue programming additional settings, or leave the programming interface to time out. ## **Programming Option Addresses** | Address | Programming Options | |---------|-------------------------| | 1 | 125kHz Reading Mode | | 2 | Wiegand Output Format | | 3 | LED Function | | 4 | Intelligent Tamper Mode | | 5 | Enable ASK (EM) Cards | | 6 | PIN Data Interface | | 7 | PSK Unscramble | | 8 | PSK Enable | | 12 | Factory Default | # 125kHz Programming # 125kHz Reading Mode Reading mode determines how the data on the 125kHz card is processed by the reader. The following options are available by badging a programming card **once** to enter **Address 1**. | Function | 125kHz
Setting | Description | |---------------|-------------------|--| | | 1 | All 125KHz cards will be read (no filtering) | | ICT | 2 | Can only read ICT programmed cards | | POSTECH | 3 | Can only read POSTECH programmed cards. Selecting this option disables the programming card. | | HID | 4 | Can only read HID programmed cards. Selecting this option disables the programming card. | | ICT & HID | 5 | Can only read ICT and HID programmed cards | | ICT & POSTECH | 6 | Can only read ICT and POSTECH programmed cards | | POSTECH & HID | 7 | Can only read POSTECH and HID programmed cards. Selecting this option disables the programming card. | # Wiegand Output Format When the Output Mode of the reader is set to Wiegand, the interface programming configures how the reader sends information to the connected system. The following options are available by badging the programming card twice to enter Address 2. | Setting | 125kHz
Setting | Description | |----------------------|-------------------|--| | Auto | 1 | When a card is badged, the number of bits sent is determined by the information encoded on the card. | | 26 Bit Wiegand | 2 | Standard 26 Bit Wiegand data sent on the DO and D1 data lines. Truncation of site/facility codes will occur for any card or tag programmed with a site code above 255. | | 27 Bit Tecom Wiegand | 3 | Tecom formatted 27 Bit Wiegand sent on the D0 and D1 data lines. Truncation of site/facility codes will occur for any card or tag programmed with a site code above 2048. | | 32 Bit Wiegand | 4 | Standard 32 Bit Wiegand data sent on the DO and D1 data lines. No truncation will typically occur; however, it is recommended that you use industry standard 34 Bit. 32 Bit Wiegand has no parity or other error checking. | | 34 Bit Wiegand | 5 | Standard 34 Bit Wiegand data sent on the D0 and D1 data lines. | | 66 Bit Wiegand | 6 | Standard 66 Bit Wiegand data sent on the D0 and D1 data lines. | | 37 Bit Wiegand | 7 | Standard 37 Bit Wiegand data sent on the DO and D1 data lines. | | 64 Bit Wiegand | 8 | Standard 64 Bit Wiegand data sent on the D0 and D1 data lines. | | Kantech KSF | 9 | Kantech formatted 26 Bit Wiegand sent on the D0 and D1 data lines. | ## **LED Function** The LED function allows the configuration of dual or single line LED operation. The default is single LED mode, Blue On. The following options are available by badging the programming card three times to enter Address 3. | Setting | 125kHz
Setting | Description | |----------|-------------------|---| | Dual | 1 | Grounding the orange wire will enable the green LED. Grounding the brown wire will enable the blue LED. | | Blue On | 2 | The blue LED is on by default. Grounding the brown wire turns off the blue LED and turns on the green LED. | | Green On | 3 | The green LED is on by default. Grounding the brown wire turns off the green LED and turns on the blue LED. | # Intelligent Tamper Mode Enabling the intelligent reader tamper mode will force the card reader to check in to the device it is connected to every 30 seconds. The following options are available by badging the programming card four times to enter Address 4. | Function | Setting | |----------|---------| | Disabled | 1 | | Enabled | 2 | Only enable Intelligent Reader Tamper Mode if the access control system or reader interface supports intelligent tamper operation. # Enable ASK (EM) Cards This enables the card reader to read ASK (EM) formatted cards. By default, this feature is enabled only if the PSK/EM hardware is fitted. The following options are available by badging the programming card **five** times to enter **Address 5**. | Function | Setting | |----------|---------| | Disabled | 1 | | Enabled | 2 | ## PIN Data Interface The PIN data interface format defines how the PIN data is sent using the DO and D1 data interface. The following options are available by badging the programming card **six** times to enter **Address 6**. | Setting | Function | Max PIN (when using a reader module) | |---------|-----------------------|--------------------------------------| | 1 | ARK-501 | 9999999 | | 2 | 26 Bit Wiegand Format | 65535 | | 3 | 4 Bit | 9999999 | | 4 | 4 Bit with Parity | 9999999 | | 5 | 4 Bit Buffered | 9999999 | |---|----------------------------|---------| | 6 | 4 Bit Buffered with Parity | 9999999 | | 7 | 36 Bit Wiegand Format | 1048575 | ARK-501, 4 bit, and 4 bit with parity send every button press instantly down the data interface. 26 bit Wiegand, 36 Bit Wiegand, 4 bit buffered, and 4 bit buffered with parity buffer the key presses and send them when the user presses ENTER. Pressing the CLEAR key wipes the buffer. If the max PIN is exceeded a long beep is generated and no data is sent. When using the format 4 bit buffered with parity a Reader Expander set with the card format of 26 bit will decode PINs that are 6 digits long as card numbers and handle it as a card. This is the same for HID 34 Bit with 8 digit PINs. Where possible, these combinations should be avoided. ## **PSK Unscramble** PSK Unscramble enables the reader to read Kantech, Tecom and Motorola cards. The following options are available by badging the programming card **seven** times to enter **Address 7**. This option is only available if the PSK hardware is present. | Function | Setting | |----------|---------| | Raw | 1 | | Kantech | 2 | | Tecom | 3 | | Motorola | 4 | ## **PSK Enable** This enables the card reader to read PSK formatted cards. By default, this feature is enabled and is only available if the PSK hardware is present. The following options are available by badging the programming card eight times to enter Address 8. | Function | Setting | |----------|---------| | Disabled | 1 | | Enabled | 2 | # Factory Default This resets all of the device's settings. To reset the reader, badge the 125kHz programming card **twelve** times to enter **Address 12**. # Disclaimer and Warranty **Disclaimer:** Whilst every effort has been made to ensure accuracy in the representation of this product, neither Integrated Control Technology Ltd nor its employees shall be liable under any circumstances to any party in respect of decisions or actions they may make as a result of using this information. In accordance with the ICT policy of enhanced development, design and specifications are subject to change without notice. For warranty information, see our Standard Product Warranty. $Designers\ \&\ manufacturers\ of\ integrated\ electronic\ access\ control,\ security\ and\ automation\ products.$ ${\sf Designed\,\&\,manufactured\,by\,Integrated\,Control\,Technology\,Ltd.}$ $\label{lem:copyright @Integrated Control Technology Limited 2003-2025. All \ rights \ reserved.$ Disclaimer: Whilst every effort has been made to ensure accuracy in the representation of this product, neither Integrated Control Technology Ltd nor its employees shall be liable under any circumstances to any party in respect of decisions or actions they may make as a result of using this information. In accordance **www.ict.co** 01-Apr-25 with the ICT policy of enhanced development, design and specifications are subject to change without notice.